i

ADVANCED ALGORITHMS THEORY SWISS KNIFE

-«

GABRIEL ROVESTI

1 Advanced Algorithms Theory Swiss Knife

1 TABLE OF CONTENTS

2 Graph —General DefiNITiONS c..iiu it ittt ettt et et e te st etaetastnseanssanssenssenssannsen 5
3 Depth FIirst SEarCh - DFSceiiiiiii ettt et e et et eaeeae s e san e e easassansansansanssnnnes 7
3.1 D LoE o]] o) 4 o] o PRSPPSO PRPRN 7
3.2 FA\F={o] 14 1] 0 1 [POTS OO TP PP PRTRPPPRE 7
3.3 (070] 001 o] o) (] £V 2RSSO TRPIN 7
3.4 FaY o] o] UTe2=1 4 (o] o |- O OO PP PPN 8
4 Breadth First Search - BFS..... o et e e et et et e e eens 9
4.1 D LT o]] o) 4 o] o [N PP PRPRN 9
4.2 P = (o] 414 o]0 o I TP PPN 9
4.3 (076] 110] o112 (] £ V2SO 9
4.4 FY o] o1 Te2=1 4 (o] 1< J PP PP PPRPI 10
5 Minimum Spanning Tre@ —MST ... ittt e e et e e e e e e eens 11
5.1 Generic Greedy ALBOTTNM .. co. ittt e e e e eens 11
5.2 DEfiNITIONS teniiiiiiiiiiii et ettt ettt e ean s ean e eees 11
ST o 10 I A\ = Lo T 41 o] o FP RPN 12
6.1 D LY o] g o) 4 o] o [N O PURPRPRP 12
6.2 JA\F={o] 11421 0 1 [OOSR O TP PRSP PRRN 12
6.3 (0701 2701 1=l /2% 12
6.4 Example of EXECULION fOr EXAM ..unenieiieii et e e e e e e e e e 12
7 Efficient Prim—Heap ImMplementation. ...t ee e et e e e e e e aaeaaas 13
7.1 D L=ET o] g o) 4 o] o [N O SPTURPR PR 13
7.2 JA\F={o] 114] o 1 [OOSR RRON 13
7.3 (076] 1] o] (=) (] 2P T TP PP TP PRPRPRY 14
8 KrUSKAL S AlGOTITNM ce e ittt ettt ee et et et e enenesaesensansansensanssnssessansensensensenns 15
8.1 (B 1=TSTo] g1 014 0] o I PP PP PPRPRN 15
8.2 P2\ F=Lo] g1 0] o o I PP OR PP PPPPRS 15
8.3 (076] 110] o (=2 (] V28 TPt 15
8.4 Example of EXECULION FOr EXAM c..vuiiii ittt st e s e e e eeseeensen s anaans 15
9 Efficient Kruskal —Union-FiNd.........cociiiiiiiiiiiiiiiii e 16
9.1 D LT o]] o) 4 o] I TP PP PP PP PPPPI 16
9.2 FaF={o] 14 0] 1 o I PP PPRPIN 16
9.3 (070] 110] o (=2 £ Y28 PRt 16
10 SHOMEST PAth .. ettt s e et e et s et e eena et 17

Written by Gabriel R.

2 Advanced Algorithms Theory Swiss Knife

11 Single-Source Shortest Path (SSSP) ..c..iuiiiiiiiiiie ittt et st eaeeaeeeseaanees 17
12 Non-negative WEIghts — DijJKSTra c..cuuivniiiiiiiii ettt e s ee e easaneaneanseneannan 18
12.1 D LY o]] o) 4 o] o [N PO P PP PP 18
L2 U= (o111 511 o TP PRSP TRPRPRPPRPOt 18
2R T 070 001 o] 2 (] £V ST PP PP 18
13 EffiCient DijKStra — HEAP . ittt et et et et et e e e eeeeeeeen e e e annan 19
13.1 D LoE T o]] o) 4 o] o [N PO PP 19
LT A\ U= (o1 411 511 o TP PRSPPSOt 19
ST B 070] 0] o1 (=)] £ V2SRRIt 19
14 General Case: SSSP Problem ettt e e eaaae 20
15 Bellman-Ford’s ALBOMTNM .. .c. ettt e e e e e e e eens 21
15.1 D LY o]] o] 4 o] s I PO PPPPI 21
LT A\ U= (o111 511 o TP RSP PRPRPROt 21
LIRS B 0] 0] o1 1)) £ V2SRRIt 21
16 ALL-Pairs Shortest PAths (APSP) ...uu it e st et s e e e e et sasansansaneanaanns 22
17 Floyd-Warshall’s ALSOITNM ee ettt et et e et s et s e eene e eene s e reaeeenes 23
171 TS Yod 10 o] TSNS 23
T7.2 ALBOITNIM et et r e et et et eaeeaeaesen st san s e anannansennranennraneanaanns 23
LI5S T 0] 0] o1 (=) 1] £ V2SRRIt 23
18 MaXIMIUM FLOWS ceeiiiiiiiii ettt et et st e e e s eta e ean s eene s enaaeeenes 24
19 Ford-Fulkerson’s ALZOrthm ...t e e ere e e e e s e s e e aaaas 25
19.1 [1Yo 10 o] TSNS 25
LS I X[= (o1 411 111 o I PR PP TP PPPRRt 26
S TR T ©o] o 07 0] U= {1 4V /2SN 26
20 NP-HAFANESS «eeniiiiiiiiiii ettt e s e s e e s ean e eans 27
20.1 NP-Hard Problems ...ttt et et e e 28
20.2 NP-HAId ProOfS couieiiiiiiiiiiiiii ettt ettt et et st et eaaeees 28
21 ApPProxXimation ALBOITNIMIS ...iu. ittt e e e et eesee st sensenssnssnssensensensensennsnns 36
211 Examples of APProXimatioNS. ..o iie ittt ie ettt ee et een et anenssnnsensensensensennees 37
22 TSP &METNC TSP ..ttt ettt et e e e et e e e teae s e e tesae e e eeeea e e eeeaneeeeeenaens 39
22.1 Travelling Salesperson Problem (TSP) ...t e e e e e e e e e 39
22,2 MBI TSP ettt ettt et ettt e e et e e e e taa e e e e tea e e e tena e e e tena e eeten e eenens 39
22.2.1 Metric TSP IS NP-Hardcc.iiieiiiiiiiiiiiiiiiiiiii e 39
22.3 2-Approximation Algorithm fOr MetriC TSP ...c..ivniiniiiir e s ea e 41
22.4 3/2(or 1.5) Approximation Algorithm for MetriC TSPccuiiuiiiiiiiiiiiiiiiirir e e 42

Written by Gabriel R.

3 Advanced Algorithms Theory Swiss Knife

23 1= 0201 =T PP RO PPRPOTPRPPPRPRE 46
23,1 SetCoveriS NP-HArdccciiiiiiiiiiiiii ettt e 46
23.2 Greedy Approximation AlZOMTNM. ... ettt e e ee e eaeaeanean e e aaaa s 47

24 (2F-Talo o] aa]FA=Te WA\ ¥=lo] 14] 0 1< THNTE PP PRPRPRN 48
24.1 Classification of Randomized ALZOIHTNMS ...c..iiiiiiiiiiiiiiieie ettt e 48
24.2 Karger’s Algorithm for Minimum CUt.....c..eiiiuiiiiiiiiieie et eree e et e eenes 49

25 CherNOff BOUNGS c.cuuuiiiiiiiiiiiiiicii ettt ettt et et s e b e ren s et s e sansenneses 51
25,1 Chernoff BoUNd VariantS.....c.ccviiuuiiiiiiiiiiiiiiiii ittt ettt et s eaa et e e 51
25.2 Analysis in High Probability of Randomized QUICKSOIt......ccivviiiiiiiiiiiiiiiirrr e 51

Written by Gabriel R.

4 Advanced Algorithms Theory Swiss Knife

Disclaimer

This file contains basically a refined version of full notes (and of my full theory file) to summarize the
theory content and make it clearly visible if possible in a proper way, concise but understandable. This
respects and follows, both chronologically and logically, the topics seen in 2023/2024.

Written by Gabriel R.

5 Advanced Algorithms Theory Swiss Knife

2 GRAPH - GENERAL DEFINITIONS

e G = (V,E) asthe graph itself
o V =setof vertices (aka nodes)
o E €V xV (cartesian product = all) is a collection of edges
* anedge is a pair of vertices (u, v)
e jtindicates the connection between two nodes
e aconnection of vertices allows for repetition
e directed graphs, which happens if (u,v) # (v, u)
e undirected graphs, which happens if (u,v) = (v,u)
e arc =edge inside directed graphs (also called directed edges)
e givenanedgee = (u,v)
o eisincidentonu and v (happens if vertex if one of endpoints in that edge)
o uandv are adjacent (there is an edge between the two vertices)
e neighbors of a vertex: all vertices v s.t. (u,v) € E
o allvertices directly connected to a given vertex by an edge
e degree of a vertex v, denoted as d(v) or degree(v)
o the number of edges incident on v
e path:uq,u,...u;pand (U, uj41) EEV1I<i<k
o finite/infinite sequence of nodes which joins a sequence of vertices via edges
e simple path: u; (all vertices) are all distinct
o same definition as above and vertices/nodes are all distinct/so are the edges
o e.g.,5,1,8,7,6,1,4has 1repeated twice so it’s not simple
e cycle: simple path s.t. u; = uy (starts from a given vertex/ends at same node)
e subgraph:G' = (V',E') s.t.
Vv'cv
E'CE
the edges of E' are incident only on vertices of V'
o inwords: itis a subset of the larger original graph

o O O

e spanning subgraph: a subgraphwith V' =V
o asubgraph which “spans” the original graph (so there are all the vertices)
o following other definitions

= subgraph obtained by edge deletions only but retaining all vertices
= soit’s asubgraph of G with same vertex setas G
e connected graph: if Vu,v € V,3 apathfromutov

e connected components: a partition of G in subgraphs G; = (V;,E;),V1 <i < ks.t.

o G;isconnected Vi
o V=Vulhu..uV,
o E=E/VUE,U..UE;
o Vi # jthereisnoedge betweenV; and V;
e tree: connected graph without cycles
o anytwo vertices are connected by exactly one path
o forest: set of trees (disjoint)
o also=undirected graph in which any two vertices are connected by at most one path

Written by Gabriel R.

6 Advanced Algorithms Theory Swiss Knife

e spanningtree: a spanning subgraph connected and without cycles
e spanning forest: a spanning subgraph without cycles

Generally, remember:

e n = |V]|(number of nodes)
e m = |E| (number of edges)
e thesizeofagraphisn+m

There are also multiple ways of representing:

e anadjacency list
o anarray A of n lists, one V vertex v € V (consider the example below)
o each containing all the vertices adjacent to v (represented by table below)

2,5
1,3,4,5
2,4
2,5,3
4,1,2

OB WIN| =

What if directed? Only vertices pointed for that vertex.

e Pro:space usage 8(n + m)i.e. linear

e Con:no quick way to determine if a given edge is in the graph

e an adjacency matrix
o anxnmatrixAs.t.A[i,j] = 1lifedge(i,j) € E, 0 otherwise

—
o
]
[LY A

e If graphis directed - the matrix is asymmetric
e |[f graphis undirected = the matrix is symmetric

In case of a weighted graph, each cell of the matrix has either the value of the edge weight (as number)
w or —/null to represent null costs. This kind of graph represents costs, capacities, etc.

e Pro: Quick to determine if a given edge is present
e Con: Space required is 8(n?) = can be superlinear in the input size
o if number of vertices increases, the space required by matrix grows quadratically

Written by Gabriel R.

7 Advanced Algorithms Theory Swiss Knife

3 DEPTHFIRST SEARCH - DFS

3.1 DESCRIPTION

The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a
graph) and explores as far as possible along each branch before backtracking. It may find:

- new edges (discovery edge)
- non-tree edges, linked to ancestors (back edges)

Visit a vertex, then a neighbor of the vertex, then a neighbor of the neighbor —these are all neighbours,
classified with adjacency lists.

3.2 ALGORITHM

procedure DFS(G,V)
visit v
Ly[v].ID = 1
forall e € G.incidentEdges(v): do
if Lg(e).label = null then
w = G.opposite(v, e)
if Ly[w].ID = 0 then
Lgle].label = DISCOVERY EDGE
DFS(G,w)
else

Lg[e]. label = BACK EDGE

3.3 COMPLEXITY

Given:

e ng:number of vertices of C (one invocation Vv € ()
e mg: number of edges of C (costs related to node, excluding recursive invocations inside)

The complexity overall is:

6 Zd(v) = 6(m,)

VECs

More in general: O(n + m) —n vertices and m edges

Written by Gabriel R.

8 Advanced Algorithms Theory Swiss Knife

3.4 APPLICATIONS

There are several:

s — t path (between two generic vertices)
o done adding a parent field
- finding cycles
o use parent field on vertices and ancestor on edges
- find connected components
o run the algorithm n times
o consider all untouched vertices
o see which have back edges, meaning they “close” the cycle
o otherwise, return
- find a spanning tree

Written by Gabriel R.

9 Advanced Algorithms Theory Swiss Knife

4 BREADTH FIRST SEARCH - BFS

4.1 DESCRIPTION

The algorithm is iterative, starts from a source vertex and visits all vertices connected to a specific
component, partitioning them in levels according to their distance. It still has discovery edges:

- but adds cross edges — which connect vertices at different levels

4.2 ALGORITHM

procedure BFS(G, s)
visit(s)
Ly[s].ID =1
Create a set Ly containing s
i=0
while (! L;. isEmpty) do:
Create a set of vertices L;;4
for each v € L; do:
for each e € G. incidentEdges(v) do:
if Lg[e].label = null then
w = G.opposite(v,e)
if L,[w].ID = 0 then
Lgle].label = DISCOVERY EDGE
visit w
Ly[w].ID =1
addw in L4
else

Lg[e].label = CROSS EDGE

i=i+1

4.3 COMPLEXITY

O(n+m)

Written by Gabriel R.

10 Advanced Algorithms Theory Swiss Knife

4.4 APPLICATIONS

- Same asfor DFSin 8(n + m) time
So, again:

- s —t path (between two generic vertices)

o done adding a parent field
finding cycles

o use parent field on vertices and ancestor on edges
find connected components

o runthe algorithm n times

o consider all untouched vertices
o see which have back edges, meaning they “close” the cycle
o otherwise, return

find a spanning tree

Written by Gabriel R.

11 Advanced Algorithms Theory Swiss Knife

5 MINIMUM SPANNING TREE - MST

- Input: agraph G = (V, E) undirected, connected and weighted
o Aweightw:E - R
o definesw(u,v) = cost of edge (u, v)

- Output: aspanningtree T € E of G s.t. w(t) = X, yer Ww(u, v) is minimized
o Goalis minimizing the sum for all weights of every edge of the tree

5.1 GENERIC GREEDY ALGORITHM

procedure Generic — MST(G)
A=0
while 4 does not form a spanning tree do:
find an edge (u,v) that is safe for A // crucial step
A=AU{(u,v)} // add vertices to A

return A // Ais an MST

5.2 DEFINITIONS

- Acutofgraph ¢ = (V,E)isapartitionof V — (§,V\ S)
o inwords, a partition of vertices into two disjoint subsets
o itcanbe done on one or more edges
- Anedge (u,v) € Ecrossesacut(S,V\S)ifveSandv € V \ S (orviceversa)
o so, ifits endpoints lie in different subsets of the partition defined by the cut
- Acutrespects a set of edges A if no edge of A crosses the cut
- Given a cut, an edge that crosses the cut and is of minimum weight is called light edge (for that
cut) 2 they are useful, because when included in MSTs, they have minimum weight

There is also the minimum cut, for which we have d(v) = t Vv € V, where t is a generic size of graph.
Summing up all n vertices, we obtain Y,cy d(v) = tn, concludingit’s Y.,y d(v) = 2m.

Written by Gabriel R.

12 Advanced Algorithms Theory Swiss Knife

6 PRIM’S ALGORITHM

6.1 DESCRIPTION

The algorithm is iterative and selects light edges at every step, growing a spanning tree from there.

Consider this gif to see the running. We have to preserve “safe edge” property — take only minimal
edges not already inside of the tree.

6.2 ALGORITHM

procedure Prim(G, S)
X ={S}
A=0
while there is an edge (u,v) withu € X and v ¢ X do:
(u*, v*) = a minimum weight such edge (aka light edge)
add vertex v*to X
add edge (u*,v*) to A

return A

6.3 COMPLEXITY

O(m*n)

6.4 EXAMPLE OF EXECUTION FOR EXAM

Traversal: (a,e), (a,b), (e, f), (b,c), (c,d)

Written by Gabriel R.

https://en.wikipedia.org/wiki/Prim%27s_algorithm#/media/File:PrimAlgDemo.gif

13 Advanced Algorithms Theory Swiss Knife

7 EFFICIENT PRIM — HEAP IMPLEMENTATION

7.1 DESCRIPTION

The previous is not so efficient in large structures. The right kind of data structure to improve the
algorithm is a priority queue, implemented with a heap.

- Recap about this data structure
o insert = add an object to the heap (possibly fast)
o extractMin - remove an object with the smallest key (highest priority)
o delete - given a pointer to an object, remove it

- Inaheap with n objects, the complexity of these operations is O(log(n))

We can redefine the algorithm exploiting this efficient data structure basically with the same principle:

- consider a min heap starting from whatever vertex, which is the root
- from there, always extract the minimum value (means checking if it is min heap),
o then update the path

7.2 ALGORITHM

procedure Prim (G, s)
foreachv € V:do
key[u] = +oo
n(v) = NULL // = parent of v in the tree being built
Key[s] =0
H=V
while H # 0 do:
v* = extractMin(H)
for each v adjacent to v*: do
ifv e Hand w(v*,v) < Key(v) then
n(v) =v*
delete v from H
Key(v) =w(v",v)

insert vinto H

Written by Gabriel R.

14 Advanced Algorithms Theory Swiss Knife

7.3 COMPLEXITY

- init>0(n)
- while = niterations
- extractMin - 0(log(n))

Total cost of only extractMin operations: O(nlog(n))

- forloop: executed O(m) times in total (every vertex is explored)
o vEH-0(1)
= this hereis a simple check
o Key(v)=w(@" v)— delete + insert: 0(2log(n)) = 0(log(n))
= two operations

Total cost of for loop: O (mlog(n)) (iterating for all adjacent nodes, quantity equal to node degree)

This way, the total complexity of the algorithm is O (nlog(n) + mlog(n)) = 0(mlog(n)) (since G is
connected, we recall) 2 near-linear time.

Written by Gabriel R.

15 Advanced Algorithms Theory Swiss Knife

8 KRUSKAL’S ALGORITHM

8.1 DESCRIPTION

It picks the minimum weighted edge at first and the maximum weighted edge at last. It sorts edges by
weight and then adds them continuously, preserving the “safe edge” property — take only the
unexplored. It does so preventing the adding of cycles.

8.2 ALGORITHM

procedure Kruskal(G)
A=0
Sort safe edges of G by weight
for each edge e in non — decreasing order of weight: do
if AU {e} is acyclic then:
A=AU{e}

return 4

8.3 COMPLEXITY

- sorting: 0(mlog(n))
- forloop: check whether e = (u, v) closes a cycle is equivalent to check whether A contains an
u — v path > DFSon G = (V, A) > complexity: 0(n)

Total: O(m * n) > O(mlog(n)) + O(m *n) = O(m *n)

8.4 EXAMPLE OF EXECUTION FOR EXAM

Traversal: (a, e), (c,d), (a,b), (e,), (b, c)

Written by Gabriel R.

16 Advanced Algorithms Theory Swiss Knife

9 EFFICIENT KRUSKAL — UNION-FIND

9.1 DESCRIPTION

It can be implemented as fast as Prim’s, considering the most frequent operation here is cycle check
(equivalently, path check), which happens when an edge is added to A.

We create a new data structure supporting this operation fast and to do that, we use a structure called
Union-Find (also called disjoint set). This is a structure to merge disjoint sets (also non-overlapping in
their elements) of objects and supports at least three operations:

- Init: given an array X of objects
o itcreates a Union-Find data structure with each object x € X in its own set
- Find: given an object x, return the name of the set that contains x
o depth: number of edges traversed by Find
- Union: given two objects x, y merge the sets that contain x and y into a single set
o done whenever the sets are distinct
o ifx,y are already in the same set, this operation does nothing

9.2 ALGORITHM

procedure Kruskal(G)
A=0
U =init(V)
sort edges of E by weight
for each edge e = (v,w) in non — decreasing order of weight: do
if Find(v) # Find(w) then:
A=AU{(v,w)}
Union(v,w)

return 4

9.3 COMPLEXITY

- Init: O(n)

- Sorting: 0(mlog(n))

- 2mFind: O(mlog(n))

- n—1Union: 0(nlog(n)) = only when | go inside an “if” and when the edge is added
- Aupdating: 0(n)

In total: 0(mlog(n))

Written by Gabriel R.

17 Advanced Algorithms Theory Swiss Knife

10 SHORTEST PATH

- Given a weighted graph, the length of a path p = vy, v,, ... vy is defined as len(P) =
?:?W(”i: Viy1)
- Ashortest path from a vertex u to a vertex v is a path with minimum length among allu — v

paths
- The distance between 2 vertices s and t, denoted as dist(s, t) is the length of a shortest path
from s to t; if there is no path at all from s to t then dist(s,t) = +oo

The problem itself is the following:

- Given adirected, weighted graph and a source vertex s € IV and a destination t € IV, compute
the shortest path from s to v

11 SINGLE-SOURCE SHORTEST PATH (SSSP)

- input: a directed, weighted graph G with edge weights w: E = R and a source vertexs € I/
- output: dist(s,v),Vv €V
o shortest path to all destinations

There are two major cases to solve: a special one and a more general one.

Written by Gabriel R.

18 Advanced Algorithms Theory Swiss Knife

12 NON-NEGATIVE WEIGHTS — DIJKSTRA

12.1 DESCRIPTION

Dijkstra's algorithm finds the shortest path from one vertex to all other vertices. It does so by
repeatedly selecting the nearest unvisited vertex and calculating the distance to all the unvisited
neighboring vertices.

- input:directed G,s e V,w: E = R,
- output: dist(s,v) = len(v),Vv €V
o with len(v) coming as shorthand form of the previous one

12.2 ALGORITHM

procedure Dijkstra(G,s)

X = {s}
len(s) =0
len(v) =

while there is an edge (v,w) withv € X and w ¢ X: do
(v*,w*) = such an edge minimizing len(v) + w(v,w)
addw*to X

len(w*) = len(v*) + w(v*,w")

12.3 COMPLEXITY

O(m=#*n)

Written by Gabriel R.

19 Advanced Algorithms Theory Swiss Knife

13 EFFICIENT DUUKSTRA — HEAP

13.1 DESCRIPTION

Normal implementation uses adjacency list. This implementation improves efficiency by using a
priority queue (usually implemented as a binary heap) to select the vertex with the smallest tentative
distance efficiently. The implementation is almost identical to Prim with heaps.

13.2 ALGORITHM
procedure Dijkstra(G, s) (almost identical to Prim’s implementation with heaps)
X = {s}
H=0
key(s) =0

foreachv # s:do
key(v) = o
foreachv € V:do
insert vinto H
while H is non — empty: do
w* = extractMin(H)
add w* to X
len(w*) = key(w™)
for each edge (w*,y) s.t.y &€ X:do
deletey from H
key(y) = min {key(y), len(w*) + w(v*,w*)}

insert y into H

13.3 COMPLEXITY

- considering graph as adjacency list, n vertices and m edges
- log(n) iterations because of heap usage

Total number of operations: 0((n + m) log(n) (there are O(n + m) operations on heaps)

Written by Gabriel R.

20 Advanced Algorithms Theory Swiss Knife

14 GENERAL CASE: SSSP PROBLEM

We reformulate the previous problem a bit:

- Input: a directed weighted graph G = (V, E) and a source vertexs € V
- Output: one of the following

o dist(s,v) Vvertexv eV

o adeclaration that ¢ contains a negative cycle

Need to forbid negative cycles in shortest paths, they lead to infinitely small paths, which is an NP-
Hard problem.

The main Dijkstra problems are two:

- It never revisits/updates its decisions, but it should for all vertices!

o Once avertex is marked as “closed”, we will never develop this node again

o If we have avertex in open such that its costis minimal - by adding any positive number
to any vertex - the minimality will never change
Without the constraint on positive numbers - the above assumption is not true
It assumes them to be positive to make the algorithm run faster and does this to avoid
considering paths which can’t be shorter

- len(v) should be an estimated distance, which needs to be updated for every vertex
o howmanytimes? < n—1edges= n — 1timesshould be enough
o maximum number of edges in a simple path between any two vertices

Written by Gabriel R.

21 Advanced Algorithms Theory Swiss Knife

15 BELLMAN-FORD’S ALGORITHM

15.1 DESCRIPTION

- Input: Adirected graph G with edge weights w: E - R and a source vertexs € IV
- Output: Either dist(s,v) Vv € V or a declaration that G contains a negative cycle

The algorithms is used when the graph might possess negative weights and can even detect negative
cycles. If the graph contains one, there is no cheapest path, instead one can make it cheaper by one

more walk around said negative cycle (inn — 1 iterations it reaches a fix-point, if it doesn’t it means a
negative cycle exists). Still, it’s slower compared to Dijkstra.

15.2 ALGORITHM

procedure Bellman — Ford (G, s)
len(s) =0
len(v) = Vv s
for n — 1 iterations do
for each edge (u,v) € E: do
len(v) = min{len(v), len(u) + w(u, v)}
for each edge (u,v) € E:do
if len(v) > len(u) + w(u, v) then

return “G contains a negative cycle”

15.3 COMPLEXITY

O(m=xn)

Written by Gabriel R.

22 Advanced Algorithms Theory Swiss Knife

16 ALL-PAIRS SHORTEST PATHS (APSP)

- Input: Adirected, weighted graph G = (V, E)
- Output: One of the following:
o dist(u,v) V¥ ordered vertex pair
o adeclaration that ¢ contains a negative cycle
= this can be problematic in finding a shortest path
* now we would have to output n? shortest paths

Consider:

- Ifwe use Bellman-Ford - very high complexity = 0(m * n?)
o Using dynamic programming, the complexity can be reduced to O(n3 log(n))
o This holds rewriting B-F recurrence controlling the allowable size of the input

Written by Gabriel R.

23 Advanced Algorithms Theory Swiss Knife

17 FLOYD-WARSHALL’S ALGORITHM

17.1 DESCRIPTION

It’s used to find the shortest paths between all pairs of nodes in a weighted graph, with positive or
negative edges.
- instead of restricting the number of edges allowed in a solution, restrict the identities of the

vertices that are allowed in a solution
o inotherwords, now paths can pass through only certain vertices
- Basically, it compares many possible paths through the graph between each pair of vertices

It iterates on 3 vertices: u, v, k i n 3 nested loops, testing whether using k in the path is better.

17.2 ALGORITHM

procedure Floyd — Warshall(G)
label the vertices V = {1,2, ...,n} arbitrarily
A=nxnx n+1)array
foru =1ton:do
forv=1ton:do
ifu =vthenA[u,v,0] =0
else if (u,v) € E then A[u, v,0] = w(u,v)
else A[u,v,0] = +o
fork =1ton:do
foru=1ton:do
forv=1ton:do
Alu,v, k] = min {A[u, v,k — 1], Alu, k, k — 1] + A[k,v, k — 1]}
foru=1ton:do

if A[u, u,n] < 0 then return "G contains a negative cycle"

17.3 COMPLEXITY

0(n3)

Written by Gabriel R.

24 Advanced Algorithms Theory Swiss Knife

18 MAXIMUM FLOWS

- aflow network is a directed graph G = (V, E) where each edge has a capacity c(e) € R*, along
with a designated source s € V and sinkt € V
o forconvenience, write c(e) = 0 ife € E, no edges enter s and no edges leave t

- aflowisafunction f: E > R* satisfying the following constraints (how much stuff | send
through the edges in general)
o (capacity)Ve € E, f(e) < c(e) —value of the flow at most capacity of that edge
o (conservation)Vu € V \ {s,t} we have
few= > f@w)
Uu€ev s.t.(vu)eE VeV s.t.(u,v)EE
o the amount of flow going in nodes must be equal to the flow going out from those

(conservation of flows)
= jnitially, such flow is 0, which is “how much we can pass on the edge”

- thevalue of a flow is

= > few
veV s.t.(s,v)EE
o basically, the sum of all flows going in and out vertices thanks to edges

o as a matter of fact, the amount of stuff traveling from source to sink
o such flow has to be less than or equal to the capacity

As for the problem itself:

- given a flow network, find a flow f of maximum value. Such flow is measured on the maximum
value received in a sink node

Written by Gabriel R.

25 Advanced Algorithms Theory Swiss Knife

19 FORD-FULKERSON’S ALGORITHM

19.1 DESCRIPTION

Given a flow network G a flow f, the residual network of G w.r.t (with respect to) flow f, Gy, is a
network with vertex set V and with edge set E,. as follows:

- foreveryedgee = (1,v)inG
o if f(e) < c(e), add e to Gy with capacity Cr(e) = c(e) — f(e)

o if f(e) > 0, add another edge (v, u) to Gy with capacity Cr(e) = f(e)

The Ford-Fulkerson (F-F) algorithm repeatedly finds an s — t path P in Gy (e.g., using BFS) and uses P
to increase the current flow.

- Piscalled augmenting path

o Thisis a path of edges in the residual graph with unused capacity greater than 0 from
the source s to the sink t

o This can only flow on edges not fully saturated yet

In an augmenting path, the bottleneck is the smallest edge on the path. We can use this one to
augment the flow along the path

In figure below, in orange the augmenting path, in light-blue as written the bottleneck:

*ﬂenecl& of 6

or10™ (0 YT o 3

Augmenting the flow means updating the flow values along the augmenting path (left)

o Forforward edges, this means increasing the flow by the bottleneck value
When augmenting the flow along the augmenting path
o

you also need to decrease the flow along each residual edge (backward edges) by the
bottleneck value (right)

residual edges exist to “undo” bad augmenting paths which do not lead to a maximum
flow

Written by Gabriel R.

26 Advanced Algorithms Theory Swiss Knife

The residual graph, so, contains also residual edges. This algorithm continues to find augmenting
paths and augments the flow until no more augmenting paths exist.

- The algorithm simply takes in every iteration the bottleneck
- Then considers the bottleneck and keeps incrementing selecting every possible s — t path
until max flow is reached
- Eachiteration is then reported into the residual graph, accounting for the bottleneck
o e.g.ifwechose 7/11in an iteration, in the next iteration
= 4 forward (remaining)
= 7 backward (spent)

19.2 ALGORITHM

procedure Floyd — Warshall(G)
label the vertices V = {1,2, ...,n} arbitrarily
A=nxnx n+1)array
foru =1ton:do
forv=1ton:do
ifu = vthen A[u,v,0] =0
else if (u, v) € E then A[u, v,0] = w(u,v)
else A[u,v,0] = +o0
fork =1ton:do
foru =1ton:do
forv=1ton:do
Alu,v, k] = min {A[u, v,k — 1], Alu, k, k — 1] + Ak, v,k — 1]}
foru =1ton:do

if A[u, u,n] < 0 then return "G contains a negative cycle"

19.3 COMPLEXITY

- Assume capacities are integers; then
o theflowvalue increases by > 1 is each iteration
o the complexity of each iteration is O (m)

Total complexity is O(m * |f*|), where f* is a max flow

Written by Gabriel R.

27 Advanced Algorithms Theory Swiss Knife

20 NP-HARDNESS

There are problems which can be solved in linear time:
- e.g. Eulerian circuit — a graph where edges are traversed all at once

There are problems which can be solved in polynomial time:
- e.g. Minimum Spanning Tree (MST), minimizing the weights inside all tree

There are also problems where no polynomial algorithms are present to solve the problem:
- e.g.Traveling Salesperson Problem (TSP), Hamiltonian Circuit

We define the following complexity classes:

1) Pisthe set of decision problems that can be solved in polynomial time
2) NP isthe set of decision problems with the following property:
a. ifthe answer is YES, then there is a proof of this fact (called “certificate”) that can be
checked in polynomial time
3) co — NP, which is essentially the opposite of NP:
b. property: if the answeris NO, then there is a proof of this fact that can be checked in
polynomial time

Other features of problems:

- aproblemis said to be NP-Hard if a polynomial time algorithm for this one would imply the
existence of a polynomial time algorithm for every problem in NP
- More formally, a problem is NP-Hard if every problem in NP reduces in polynomial time to it
a. unless P = NP, which is not yet solved
b. ifaproblemis NP-Hard, it provides evidence the problem may not be in P
- aproblemis NP-Complete if it’s both in NP and NP-Hard
a. e.g.the Cook-Levin Theorem for Boolean Satisfiability problem (SAT)
i. made up of clauses with conjunction/disjunction, usually 3 (3-SAT)

We use a reduction given it’s a very powerful tool:

- areductionis an algorithm for transforming one problem into one another
- aproblem A reduces to B if there is an algorithm able to solve B can be translated into one
which solves A
- remember reductions works from Y (problem | know to be hard) to X (new problem)
- thereductionis FROMY .
a. lalready know it’s NP-hard AQ&NJ&M ’Fn A
- toX
a. the “new” problem

Written by Gabriel R.

28 Advanced Algorithms Theory Swiss Knife

20.1 NP-HARD PROBLEMS

- Independent Set
a. givenagraph G = (V,E) anindependent setin G is a subset I € IV with no edges
between them

- (Maximum) Independent Set (this one will be referred to as simply “Independent Set” meaning
the latter)
a. compute anindependent set of maximum size
- SAT/3-SAT (thanks to Cook-Levin Theorem)
a. SAT - Boolean satisfiability of a formula (has to be equal to TRUE)
b. 3-SAT - Boolean satisfiability of a formula made by 3-clauses
- Hamiltonian Circuit

a. acycle that traverses all the vertices only once
- (Maximum) Cligue
a. largest complete subgraph
- (Minimum) Vertex cover
a. minimum number of vertices that “touches” all edges

Examples of reductions:

Using Hamiltonian circuit to solve TSP > Ham <, TSP

a. If we had a fast algorithm for TSP, we would also solve Hamiltonian problem
Using 3SAT to solve Independent Set > 3SAT <,, IndependentSet

a. If we had a fast algorithm for Independent Set, we would also solve 3SAT
- UsingIndependent Set to solve Clique > Clique <, IndependentSet

- UsingIndependent Set to solve Vertex Cover = Vertex Cover <, IndependentSet

20.2 NP-HARD PROOFS

- Theorem: TSP (Traveling Salesperson Problem) is NP-Hard

- Proof: Reduction from Hamiltonian circuit to TSP (Ham <, TSP)
Wait a minute: TSP is not a decision problem!
No worries. Define TSP as:

- input: G = (V,E) complete, undirected, weighted graph k € R
- output: 3 in G a Hamiltonian circuit of cost < k?

We could try to use all possible k values, but k is not guaranteed to be polynomial; using only the
cycles will not work either.

What we actually do: Pick an arbitrary input instance for Ham. and create the following input for TSP:
- G' = (V,E") complete, undirected, weighted graph with:

1, ife€kE

w(e €E') = {+oo, otherwise

Written by Gabriel R.

29 Advanced Algorithms Theory Swiss Knife

If we use k = m this reduction takes poly-time ((0(n?)). Then:

- if G has an Hamiltonian circuit, then the TSP algorithm run on G’ returns an Hamiltonian circuit
with costn

- if G doesn’t have a Hamiltonian circuit, then any Hamiltonian circuitin G’ must have > 1 edge
notin G, hence of weight co. Hence, in this case, a TSP algorithm run on G’ returns a
Hamiltonian circuit of cost > n

If we had a fast algorithm for TSP we would also solve the Hamiltonian circuit problem.

Reduction from 3SAT (problem in logic) to Independent Set (problem in graphs) >
3SAT <, IndependentSet

They seem totally unrelated problems, but let’s see what we have to do (figure here is from
“Algorithms” book of Jeff Erickson, suggested in particular for the whole NP-Hardness chapter):

35AT

MAaxINDSET [size of largest True True

independent -
P G has an Dis

set in G
independent | satisfiable
set of size k

FaLse

@ transform G
FaLse
G has no @ is not

— - in O(n) Traph
Boolsas time
formula
k X o
independent satisfiable

number of clauses in @ set of size k

What we are conjecturing is the following:

GLMMM
B’SA:_ Ofmti?l
—DYes
T ”“’L% lnd S)< .
eQu) —
gd\/mﬂ»’g 'G7+"“ > Mo
,{Zmnmdf.u.
\/ G han v .S
A i 7 X

\r7

Basically, the presence of an independent set in the constructed graph corresponds to a satisfying
truth assignment for the 3SAT instance.

Let’s see the main ideas (figure representing the scenario):
- pickan arbitrary 3CNF Boolean formula f with k clauses
(a@avbveAbV-acV-ad A(waVeVvd)A(@aVv —=bVv =d)

- vertices: each vertex represents one literalin f
a. agroup of 3 vertices represents a clause (one of the k clauses)
i. assignment request = choose vertices and make a request

Written by Gabriel R.

30 Advanced Algorithms Theory Swiss Knife

- edges:
a. We add an edge between a literal and its inverse, for all the literals
b. We add an edge between every pair of vertices that are in the same group

There are two ways to think about 3SAT: (this reasoning coming from here)

- 1. Find away to assign 0/1 (false/true) to the variables such that the formula evaluates to true,
thatis each clause evaluates to true

- 2.Pickaliteral from each clause and find a truth assignment to make all of them true. You will
fail if two of the literals you pick are in conflict, i.e., you pick x; and —x;

The reduction works this way:

- the graph will have one vertex for each literal in a clause
- connect the 3 literals in a clause to form a triangle; the independent set will pick at most one
vertex from each clause, which will correspond to the literal to be set to true

=) (=) &) Ca)
ONONONONONO @.@

Figure: Graph for o = (mx3 VX2 V x3) A (x1 V "xa V x3) A (mx1 V X2 V Xq)

- connect 2 vertices if they label complementary literals; this ensures that the literals
corresponding to the independent set do not have a conflict

(=) =) (=)
(2 5T

- Take k to be the number of clauses, ensuring they are all “covered”

Written by Gabriel R.

https://courses.engr.illinois.edu/cs374/fa2020/lec_prerec/23/23_2_0_0.pdf

31 Advanced Algorithms Theory Swiss Knife

Remember what satisfiable means:

- it asks whether the variables of a given Boolean formula can be consistently replaced by the
values TRUE or FALSE in such a way that the formula evaluates to TRUE

p = (.1'| \ T; vV .1'|) N (T_) \ Iy V T]) A (T] ViV .l';;)

1. Create a vertex for each literal.

2. Connect each literal to the other two
literals in the same clause.

3. Connect each literal z; to T;.

1) idea:independent set represents conflicts = add an edge between every pair of vertices that
are inconsistent (asking for opposite assignments to the same variable)
a. inwords: if you choose one vertex, it means it’s part of a clause
b. you have to choose other two vertices which are sure to be different because they are a
different independent set
c. ifyouchoose one vertex, you have to choose the complement

i. inorderto realize the AND inside the formula

Observation: an independent set with = 1 vertex in each group gives a satisfying truth assignment —
should look for indipendent sets of size > k to say “YES, f it’s satisfiable”.

Issue: an independent set now is free to recruit multiple vertices from a group, so | might output “YES,
f is satisfiable” even if this not true! = idea: force the recruitment of one vertex per group.

2) add one edge between every pair of vertices that one in the same group
Claim: G contains an independent set of size exactly k < the formula f is satisfiable
Proof:

1) suppose f is satisfiable. Pick any satisfying assignment. Each clause in f has > 1 TRUE
literal. Thus, we can choose a subset S of k vertices in G that contains exactly one vertex per
group such that the corresponding k literals are all TRUE. The set S is an independent set
because it does not contain both endpoints of any edge of a group, nor of any edge that
connects inconsistent literals (as it is derived from a consistent truth assignment)

2) suppose G contains an independent set of size k. Each vertex in § must be in a different group.
Assign TRUE to each literal of S. Since inconsistent literals are connected by an edge, this
assignment is consistent. Since S contains 1 verftex per group, each clause in f contains (at
least) one TRUE literal = f is satisfiable

Written by Gabriel R.

32 Advanced Algorithms Theory Swiss Knife

- (Maximum) Cligue: compute the longest complete subgraph
a. othername for a complete graph (from now on, the problem will be called Clique)
b. below, a useful figure to clearly see the problem

Show that Clique is NP-Hard.

KRN

not a cligue non-maximal clique maximal cliqgue maximal cligue

Solution (a nice graphical explanation here)
Decision version:

- Input:< G = (V,E), k>
- Output: 3in G aclique of size k?

We operate a reduction from Maximum Independent Set (Ham. circuit is not
really related to it; as you can see here, one can use 3SAT in order to show
Clique is NP-complete). Figure here shows Independent Set.

- Intuition
a. clique: vertices with all edges between them
b. maximum independent set: vertices with no edges between them

- Definition

a. givenagraphG = (V,E), its edge-complement G = (v, E) has the same vertex V and

an edge set E such that (u,v) € E & (u,v) € E (so, no common edges)

- Observation
a. asetofvertices Sisindependentin G & Sisa cliquein G = the largest independent

set in G has the same size as the largest clique in G

To make it super complete, let’s draw the schema of what we are doing — takes O(nz) time, givemn the

constant work needed to traverse all edges and vertices:

Max bd S

Written by Gabriel R.

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/clique_to_independentSet.html
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect1108.pdf

33 Advanced Algorithms Theory Swiss Knife

Definition: a vertex cover of a graph is a set of vertices that includes that at least
one endpoint of every edge of the graph

|

A
7

b. Side figure represents such, to be clearer to you

©;

7!

Another problem is:

- (Minimum) Vertex Cover: compute the smallest vertex in a given graph
a. From now on, only called Vertex Cover

/
@

7\

Show that Vertex Cover is NP-Hard.
Solution (once again, a nice graphical explanation of this one here)
Decision version:

- Input:< G = (V,E), k>
- Output: 3 in G avertex cover of size k?

We operate a reduction from Maximum Independent Set (once again, this is the most similar problem
to the one we are proving)

- Observation
a. asetofvertices Sisindependentin G & V \ S is a vertex cover of G
i. inbluethereis anindependent set (actually the biggest one)
ii. the otherones are the vertex cover

\/,a)fm i

E/IACI‘ mjr

= the longest independent setin G has size n — k, where k is the size of the smallest
vertex cover of G

Independent set:

- Input:<G=W,E),n—k >
- Output: 3in G anindependent set of size n — k?

Once again, let’s represent this in a complete way:

LJ. Sit

Exercise

Written by Gabriel R.

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/independentSet_to_vertexCover.html

34 Advanced Algorithms Theory Swiss Knife

- Showthat:
a. Vertex Cover <, Independent Set
b. Clique <, Vertex Cover

= these 3 problems are equivalent.

Solution (official = shorter)

“same” as Independent Set <,, Vertex Cover

- we can consider the following figure for this one
a. consider a clique of size 4 in the middle (left)
b. if youtake the complement of this one (right)

- Ghasacliqueofsizek G has avertex over of sizen — k
a. proof: see the book (8 - p. 1106 of 4™ edition —theorem 34.12)

B >

Solution (longer and better explained)

a. Suppose that we have an efficient algorithm for solving Independent Set, it can simply be used
to decide whether G has a vertex cover of size at most k, by asking it to determine whether G
has an independent set of size at leastn - k

Written by Gabriel R.

35 Advanced Algorithms Theory Swiss Knife

Given an instance of the Vertex Cover problem, consisting of a graph G = (V, E) and an integer k
representing the size, we construct an instance of the Independent Set problem as follows:

1. LetG' =G (i.e., the graph for the Independent Set instance is the same as the original graph
G).

2. Letk' = |V| —k (i.e., the target size of the independent set is the number of vertices in G minus
the size of the vertex cover k).

To show that this reduction is correct, we need to prove the following:
1. If G has a vertex cover of size < k, then G’ has an independent set of size > k'.
2. If G' has anindependent set of size > k', then G has a vertex cover of size < k.
Let’s prove both (1) and (2):

- Suppose C is a vertex cover of size < k in G. Then, the set V' \ C is an independent set in
G' (since C covers all the edges, no two vertices in V' \ C can be adjacent). Furthermore,
[V\C| =|V|-k=k

- Suppose Sis anindependent set of size > k' in G'. Then, the set V' \ S is a vertex coverin G
(since S isindependent, every edge must have at least one endpointin V '\ S). Furthermore,
[V\S| < |V|-k'=k.

b. To show that Clique <p Vertex Cover, we need to provide a polynomial-time reduction from
the Clique problem to the Vertex Cover problem. Here's one way to construct the reduction:

Given an instance of the Clique problem, consisting of a graph G = (V,E) and aninteger k, we
construct an instance of the Vertex Cover problem as follows:

1. LetG' = G (i.e., the graph for the Vertex Cover instance is the same as the original graph G).

2. Letk' =|V| — k (i.e., the target size of the vertex cover is the number of vertices in G minus the
size of the clique k).

To show that this reduction is correct, we need to prove the following:
1. If G has a clique of size = k, then G’ has a vertex cover of size < k'.
2. If G' has avertex cover of size < k', then G has a clique of size > k.

Proof of (1): Suppose C is a clique of size = k in G. Then, the set V' \ C is a vertex cover in G’ (since C is
a clique, every edge must have at least one endpointin V '\ C). Furthermore, [V\ C| < |V| -k =k'.

Proof of (2): Suppose S is a vertex cover of size < k' in G'. Then, the set V' \ Sis a clique in G (since S is
a vertex cover, every edge must have both endpointsin V \ S, which means V' \ S is a clique).
Furthermore, |V \ S| = |V| — k' = k.

Written by Gabriel R.

36 Advanced Algorithms Theory Swiss Knife

21 APPROXIMATION ALGORITHMS

These kinds of algorithms are are efficient algorithms that find approximate solutions to optimization
problems (in particular NP-hard problems) with provable guarantees on the distance of the returned
solution to the optimal one. They solve problems not solvable in polynomial time using approximation.

An optimization problem can be described as follows:
M:1xS
where Il = approximation problem, I = set of inputs and S = set of solutions.
c:S > Rt
Above, the cost function ¢ maps each solution to a positive real number.
Viel,S5({) ={s€S:illg}

Above, the the set of feasible solutions, and our goal follows.

s* € S(i) and ¢(s*) = min/ max {c(S())}

Here, we want to find the best solution s* for a minimization/maximization problem. Specifically, we
want to find it for the specific instance of that problem (ills).

Definition: Let Il be an optimization problem and let A be an algorithm for Il that returns, Vi € [, A €
Si. We say that A; has an approximation factor of p(n) if Vi in I such that |i| = n we have:

- minimization problem (basically, an explicit lower-bound of the optimal solution)
c(An(®)
c(s*(D)
- maximization problem (basically, an explicit upper-bound of the optimal solution)
C(s*(i))

Here, we assume that ¢ maps each feasible solution to a real number > 1.

<pm)

<pm)

Goal: p(n) = 1 + €, with € as small as possible.

Definition: An approximation scheme for I is an algorithm with 2 inputs A (i, €) that Ve isa (1 + €)-

approximation.

- Inthis case we just have to choose how much approximation we want by tuning the value of €
- In other words: fixed an instance i of size n, the quality is € (whatever € is)

Written by Gabriel R.

37 Advanced Algorithms Theory Swiss Knife

21.1 EXAMPLES OF APPROXIMATIONS

Very first algorithm you can think of? Use a greedy approach:

- select the vertex for the highest degree
“remove” the touched edges
- repeat

Consider the following figure —take 3 as the highest, then 2 and 1 and remove touched edges as said:

3/—-)(————0

A
Q N;\O
DS ,

Unfortunately, for this algorithm p(n) = Q(log(n)).
How to prove a LB (Lower Bound)? It’s enough to show one “bad” input instance.
Another algorithm (greedy approach):

- choose any edge

- add its endpoints to the solution
- “remove” the covered edges

- repeat

We’ll show that this is a 2-approximation algorithm.
procedure Approx_Vertex_Cover(G)
V=0
E'=E
while E' # @:do
Let (u,v) be an arbitrary edge of E'
V'=V'u{uyv}
E'=E'\{(w2), (v,w)}
// remove edges that have u and v as endpoints
return V'
Complexity: O(n + m)

We’ll show,Z— <2

"

Written by Gabriel R.

38 Advanced Algorithms Theory Swiss Knife

Given A = set of selected edges:

- Aisamatching:Ve,e' € A=>ene' =0
a. i.e.setof edges with no vertices in common
b. everyedge is disjoint, so there is no couple of edges sharing a common node
- Approx_Vertex_Cover selects a maximal matching: V edge y, A U y is not a matching
a. thisis a matching which cannot be increased
i. notpossible to select an edge which touches other vertices

Proof:
1. lower bound to the optimal solution V*
What can one say about |V*| vs |A|?
Ais a matching = in V* there must be > 1 vertex V edge of A (right figure)

In whatever vertex cover, particularly V*, we have to cover all graph edges and, in
particular, all A edges. But 4 is a matching (so, every edge of A is disjoint), so:

V| = |A]
2. upper bound to the optimal solution V'
What can one say about |V'| vs |A|?
- |V'| = 2|A| by construction and so:

V|

(1.+2)= V' <2< 2V =

<2

Written by Gabriel R.

39 Advanced Algorithms Theory Swiss Knife

22 TSP & METRIC TSP

22.1 TRAVELLING SALESPERSON PROBLEM (TSP)

Definition: Given a complete, undirected graph and a function w: E - R*, outputatourT C E (i.e. a
cycle that passes through every vertex exactly once) minimizing Y. .cr w(e). Collectively:

T € E minimizing Z w(e)
eeT
- w:E - R":we will work only on positive weights).
a. We can do this without loss of generality (wlog) because every TSP tour has the same
number of edges = we can add a large weight to each edge, such that edges have non-
negative weights

22.2 METRIC TSP

Metric TSP is a special case of TSP where the weight function w satisfies the triangle inequality:
Yu,v,z€V,itholdsthatw(u,v) < w(u,z) + w(z,v)

The following is an example of that:

PN

O
v 5 v

The problem can be shown to be NP-Hard, using an instance of TSP to build this one and using an
Hamiltonian circuit to show we can assign a weight to each edge being “balanced” overall in the
choice, always ensuring the best choice.

22.2.1 Metric TSP is NP-Hard

Theorem: Metric TSP is NP-Hard
Proof: TSP <p Metric TSP

The idea is the following (where inequality is not strictly satisfied):

’,J_)"'":-’f.
10
r m t
. mg cha) ¢ 7 N sﬂqﬁ‘r
.-1.._.-1 “mm'ﬁ‘f 1 ’
10 © 20

A j r#{llti

Written by Gabriel R.

40 Advanced Algorithms Theory Swiss Knife

Given an instance of the TSP problem < G = (V,E),w, k >, (G= (\’I E)/ w, k>
we build an instance of Metric TSP < G' = (V,E),w' k" > é

such that the triangle inequality is satisfied in G’ . In order v

to to this, we can define the weight function w ' as follows: < Cvli(\// E) Ly kl>

w (wv) =wlv)+ W w! (U;V> = W(U’V> + \)\<l/
givingW = LIt'fbag‘g{w(u, v)} ?,:\\f\/{ W(UWJ’

Think of a value k' in such a way there if there exist an Hamiltonian circuit, there will be one in G’ in
such a way the cost of the tour will work for every edge, so:

k'=k+nW
To be shown yet:

1) w' satisfies triangle inequality
2) 3 an Hamiltonian circuit of cost k in G & 3 Hamiltonian circuit of cost k' in G’

Let’s see how to solve them formally:

1) w'(u,v) <’ w'(u,w) +w'(w,v) (is it at most the weight of the others)?
wu,v) + W <’ w(u,w) + w(w, v) + 2W (does this hold adding a general weight)?
w(u,v) <7 wu,w) + w(w, v) + W (simply adding W both members)
w(u,w) + wlw,v) + W — w(u.v) =7 0 (is it true this is at most 0)?
~— S —

>0 >0 239

We only ask if the definition of triangle inequality is satisfied correctly.
Note it’s important that the weights of edges are non-negative (otherwise, last part does not
hold)

2)

a. =:3 Ham. circuit of cost k in G. Note that an optimal solution contains exactly n edges
and the same circuit in G’ introduces a weight for every edge (so, +W V edge). Thus,
the cost of said tourin G' is k + nW

b. justremove the +W V edge to obtain a Ham. circuit of cost k in G

Written by Gabriel R.

41 Advanced Algorithms Theory Swiss Knife

Let’s see how to solve them formally:

3) w'(u,v) <7 w'(u,w) +w'(w,v) (is it at most the weight of the others)?
w(u,v) + W <7 w(u,w) + w(w, v) + 2W (does this hold adding a general weight)?
w(u,v) < wu,w) + w(w, v) + W (simply adding W both members)
w(u,w) + ww,v) + W — w(u.v) =7 0 (is it true this is at most 0)?
S——

>g =20 20

We only ask if the definition of triangle inequality is satisfied correctly.
Note it’s important that the weights of edges are non-negative (otherwise, last part does not
hold)

4)

a. =:3 Ham. circuit of cost k in G. Note that an optimal solution contains exactly n edges
and the same circuit in G’ introduces a weight for every edge (so, +W V edge). Thus,
the cost of said tour in G' is k + nW

b. justremove the +W V edge to obtain a Ham. circuit of cost k in G

22.3 2-APPROXIMATION ALGORITHM FOR METRIC TSP

What is the most similar problem to Metric TSP? MST (Minimum Spanning Tree). We give the following
intuition:

- wegive an MST

- we wantto build a cycle: what to do on a tree to achieve it?
- basically, there is a DFS traversing all the nodes

- the cycle forms having all nodes touched exactly once

i,{tqhi‘l‘lom : q

c AT /AN b
s f\jo ng{ -—efé
s Cycle

We can simply solve this problem by adding the edge (e, a) to the Preorder list and make it an
Hamiltonian circuit. We are free to add every edge we want because the graph is complete by
definition. To do so, we define the following:

procedure Approx — Metric — TSP(G):
V ={vy,v,, .0}
r = v, //root from which Prim is run
T* = Prim(G,r)

<, vy, v, > H' = PREORDER(T*,T)

Written by Gabriel R.

42 Advanced Algorithms Theory Swiss Knife

// lists all the vertices in the tree in an ordered fashion following a preorder walk
return < H',v; = H // basically, close the cycle

This algorithm uses Prim as a subroutine to compute the MST. As such, this is super-fast and can be
characterized as a near-linear algorithm.

So, to fully summarize:

1. Given a complete weighted graph G, pick any vertex v as the root, and find a minimum
spanning tree T, using Prim’s algorithm

2. Compile a list L of vertices encountered in a preorder traversal of T

3. Return L as atour

22.4 3/2 (0R 1.5) APPROXIMATION ALGORITHM FOR METRIC TSP

Christofides algorithm (or Christofides-Serdyukov algorithm) was born in 1976.

Reason for 2-approximation factor was the fact the preorder traversal of T* used every edge of T*
exactly twice. We’ll try to improve on this by constructing a tour that traverses MST edges only once.

We give a couple of definitions useful for this context:

- Apath (or cycle) is Eulerian if it crosses every edge of the graph exactly once
- Aconnected graph is Eulerian if there exists an Eulerian cycle

If the MST was Eulerian (cannot be) then we would have a 1-approx algorithm (which would be
optimal, given one would cross every edge exactly once). Approx_Metric_TSP is finding a “cheap”
Eulerian cycle in the MST, but effectively needs to double its edges.

Question: is there a cheaper Eulerian cycle?

Theorem: A connected graph is Eulerian & every vertex has even degree. The intuition is the following:
enter a vertex, then exiting from it using a new edge, doing that without using edges more than once.

wheid i oxit

A ik

We want to focus on the odd degree vertices, given | have to cross again vertices (the even ones are
fine, given we don’t pass on them again). So, let’s handle the odd-degree vertices of the MST explicitly.

Property: in any (finite) graph, the number of vertices of odd degree is even.

Proof: We use the following equality:

z deg(v) = 2m

veV

Written by Gabriel R.

43 Advanced Algorithms Theory Swiss Knife

Basically, the sum of odd vertices with even ones, will get us an even result, that’s the main intuition.
So, we can split such summation into two parts:

Z deg(u) + Z deg(w) =<n/

% we€odd
Ny N

Since the result must be even, the sum of degrees must be even too. But this happens only if the
number of odd degree vertices is even.

Idea: augment the initial MST T* with (the cheapest basically) a minimum-weight perfect matching
(perfect means that it includes all the vertices) between the vertices that have odd degree in the MST.

For instance, let’s consider the following MST, coloring in blue the odd-degree vertices. Imagine we
add a perfect matching colored in red.

D" pefecT

N D m a[](_-:;:,—. m«/j

= the resulting graph has only even-degree vertices, i.e. is an Eulerian graph.
Let’s write the algorithm, which does exactly for things:

Christofides(G)

DT < Prim(G,r) [J/T"=({V,E")

2) Let D be the set of vertices of T* with odd-degree. Compute a min-weight perfect matching M* on
the graph induced by D // this can be done in polynomial time (Edmonds, 1965)

3) The graph (V,E* U M™) is Eulerian // any edge in both E* and M* appears twice in this (multi)graph.

4) Return the cycle that visits all the vertices of G in the order of their first appearance in the Eulerian
cycle (basically, skipping all repeated vertices — shortcutting)

Consider the following example, connecting all vertices:

Written by Gabriel R.

44 Advanced Algorithms Theory Swiss Knife

Now take the odd-degree vertices T* and compute the minimum-weight perfect matching M*.

D

Putting all of this togethey (merging it all) we get:

(\/, ETU ﬂ”) = > H

Analysing the algorithm:

- w(H) Sw(T*)+wMr)
a. by triangle inequality

- w(T") <w(H")
The goaltoreachisw(H) < %w(H*). We would need to prove:

- wMn) £ %W(H*) (by triangle inequality)

Written by Gabriel R.

45 Advanced Algorithms Theory Swiss Knife

We will do the following clever step:
w(optimal tour of the odd-degree vertices of T*) < w(H")
Y
PM“'I‘{M H 5 im 7 P@ﬁe o ﬁkp(fCLr;(ja :

/' N RV 3 o) vl

¢)
=

A
)

H*
One of t)(scosts W(Z)

Putting all pieces together we get:

w(H")

w(H) <w(H") + >

_EW()

Written by Gabriel R.

46 Advanced Algorithms Theory Swiss Knife

23 SET COVER

Set cover is an optimization problem that models many problems requiring resources to be allocated.
It aims to find the least number of subsets that cover some universal set.

Its inputs are:

- I = (X, F) =instance of the set covering problem
- X = set of elements of any kind, called “universe”
- Fc{S:ScX}=BX)
a. B stands for “Boolean”: set of all subsets of X

There is a constraint that needs to be always respected: Vx € X,3S € F:x € Si.e., “F covers X”
Optimization problem: (smallest subset of F having its members covering allX) 2 find F' C F s.t.

1) F'covers X
2) min |F'|

Example:
X ={1,2,3,4,5}

F = {{1,2,3},{2,4},{3,4}, (4,5}}
= F* = {{1,2,3},{4,5}}

23.1 SETCOoVERIS NP-HARD

Assertion: Set Cover (in its decision version < (X, F), k >) is NP-hard.
Proof: Vertex Cover <, Set Cover

- Given aninstance of Vertex Cover Problem < G = (V,E), k >
- we create an instance of Set Cover problem < (X, F), k >

Basically < G = (V,E), k >>< (X,F),k >
where:

- X=E
- F={5,S, ..S,JoneVvertexeV,12,..n
- S;={e = (u,v)suchthatu =i orv = i}, which is the set of covered edges by node e

Basically, there are |V| = n subsets S;, and each subset is the set of edges incident to vertex i. Now
show that finding a Set Cover of size k < finding a Vertex Cover of size k.

- = Suppose {51,S,,...,S,} is a set cover for X. Then, every edge in E must be incident to at least
one vertex u,,..,U,. This happens because every element if one node of the adjacency list and
so we find the minimal number of nodes touching all edges of graph, guaranteeing it will be
minimal (for all sizes, given, even if less than k). Therefore, it forms a vertex cover of size k in G.

- & Suppose uy,.., U, is avertex coverin G. Then, S; covers all the edges incident to vertex u;.
Therefore, {S;,.., Sk} is a set cover of size k for X

Written by Gabriel R.

47 Advanced Algorithms Theory Swiss Knife

23.2 GREEDY APPROXIMATION ALGORITHM

The greedy method works by picking at each stage, the set S that covers the greatest number of
remaining elements that are uncovered:

- choose the subset that contains the largest number of uncovered elements
- remove from X those covered elements
- repeatuntilX =@

Approx_Set_Cover(X,F)
U=X
F' =@ // solution
while U # @:do
// take the set of F covering as many elements as possible

letSeF =|SnU|=max{|S' nU|}
S'eF

U<U\S // update the list of available elements, removing those from S
F <« F\{S} //remove the sets already considered inside of F
F'« F'u{S}

return F’

Correctness: (it does the job — it covers all the elements) At every iteration |U| decreases by at least
one.

Complexity:

- n.ofiterations < |X| (every S; € F contains at least an element)

- n.ofiterations < |F| (every S; € F contains at least two elements)

- = n. of iterations < min {|X|, |F|}

- Viterations the complexity is < |X| * |F| (scanning all elements and decreasing elements in
both sets)

= 0(IX| = [F| min{|X|,|F|})

Written by Gabriel R.

48 Advanced Algorithms Theory Swiss Knife

24 RANDOMIZED ALGORITHMS

Randomized algorithms are algorithms that may do random choices, basically using a source of
randomness in its logic. We give some basic examples:

- Example 1: Randomized quicksort (RQS)

Quicksort but chooses the pivot at random so to break the unlucky element choice and get on average
a good probability on result.

- Example 2: Verifying polynomial identity
Checks if polynomials are equivalent and there are different approaches:

- checkallthe terms (slow)
- choose arandom integer, compute the polynomials and check if they are equal
a. it may be wrong, outputting YES even If they are different

24.1 CLASSIFICATION OF RANDOMIZED ALGORITHMS

We divide these into two main categories:

1) randomized algorithms that never fail, which are called “LAS VEGAS” algorithms
a. (e.g.,randomized quicksort)

VielLAg(i) =s s.t.(i,s) el

where Il € I x S is the decisional problem, i is an input instance, Ay, is the random algorithm
which applied to the input instance produces a solution s s.t. the couple (i, s) belongs to Il

Randomness comes into play in the analysis of the complexity — because it depends from the
randomness of the choices. ¥n, T'(n) is a random variable of which we usually study its expectation
E[T(n)] or Pr(T(n) >c* f(n)) - < % (so, for some constants ¢ and k, we say that T(n) = 0(f(n))

with high probability (here, T (n) is called complexity function) — this second one is more powerful than

the first, so Pr more powerful than E.

2) randomized algorithms that may fail are called “MONTE CARLO” algorithms
a. e.g.,verifying polynomial identities

VielLAg(i) =s s.t.(i,s) ¢l
We study Pr ((i,s) € IT) as a function of n = |i| = family of random variables (binary)

Moreover, even T'(n) may be a random variable. For decision problems, these algorithms can be
divided into:

- one-sided: they may fail only on one answer
a. e.g.,can make right all YES instances but may be wrong on all NO instances
- two-sided: they may fail in both answers
a. e.g.,itcan make wrong all YES instances but can make wrong all NO instances

Written by Gabriel R.

49 Advanced Algorithms Theory Swiss Knife

24.2 KARGER’S ALGORITHM FOR MINIMUM CuUT

A quite simple MONTE CARLO and elegant algorithm created in 1993. Let’s start from the problem
itself it wants to solve: the minimum cut revolves finding a cut of minimum size, that is, the minimum
number of edges whose removal disconnects the graph. A couple of useful definitions to see the
problem:

Definition: A multiset is a collection of objects with repetitions allowed. It’s usually denoted between a
couple of brackets, as you can see here.

S = {{objects}}
V object o € S,m(0) € N\ {0]
where m = multiplicity, so how many copies of “0” are in S.
Definition:
- amultigraph ¢ = (V,€) s.t.VV S N, V finite and € is a multiset of elements (u,v) s.t.u # v
Note: A simple graph G = (V, E) is also a multigraph.
Definition:

- givenG = (V,) connected, acut C € € isamultiset of edges s.t. G' = (V, € \ C) is not
connected.

Let’s give Karger’s idea here:

- choose an edge at random
“contract” the two vertices of that edge, removing all the edges incident both vertices

This works with very low probability, but let’s use the trick we saw already: repeating this a good
enough number of times, can actually refine the analysis and obtain a good level of probability.

We see below two examples of the same contraction in Karger and on the right a generic contraction.

- Basically, it makes the two vertices to collapse in just one vertex
connected with all the previous adjacent vertices

- If as aresult there are several edges between some pairs of (newly
formed) vertices, retain them all.

Written by Gabriel R.

50 Advanced Algorithms Theory Swiss Knife

Definition: given G = (V,€) and e = (u,v) € &, the contraction of G with respect to e.g ='&"is

the multigraph with V' =V \ {u, v} U {z,,,} with z,, ,, € V coming from the fusion of u and v:
E=e\{xy)s.t.(x=wor(x=v)}}
U{{(zypy)st.(wy)e€or(wy) €€ y+uandy # v
We describe the algorithm here:
FULL_CONTRACTION (G = (V,€))
fori =1ton—2:do

e —« RANDOM(E) // choose an edge at random in multiset

G'=W,E) « g // contraction on graph with random edge selection
VeV // construct the new graph with vertices and edges
E€&

return |€| // return the graph and its cardinality

Consider k = how many times to repeat FULL_CONTRACTION, which depends on the probability of
making a mistake — hence, it depends on the analysis of the algorithm)

KARGER(G = (V,), k)

v

repeats FULL — CONTRACTION k
times to reduce the probability of
error

min —cut = &€
fori =1tok:do to be determined by the analysis
t = FULL_CONTRACTION(G)
if |t| < |min — cut| then
min—cut =t

return min — cut

The analysis suggests us the following:

e in order to obtain Pr(Karger succeds) > 1 — ﬁ we need to repeat “Full
contraction” k = d”z% times

Written by Gabriel R.

51 Advanced Algorithms Theory Swiss Knife

25 CHERNOFF BOUNDS

Chernoff bounds are tools from modern probability theory that are frequently used in the analysis of
randomized algorithms. They’re a more powerful version of the Markov’s lemma. This mainly uses
indicator random variables (that is, variables which can have either value 0 or 1).

Generally, Chernoff bounds are a tool which allow to

study the concentration of an event around its mean \
(specifically, in the “tail” — see figure — so, far from the Pr{v=k]
mean) and to overcome the previous fact we use them.

- The markup is a little loose, not very significant tail k
- Better augmentation allows me to move from
analysis to the average case to the more desirable high probability analysis

The idea between Chernoff bounds is to transform the original random variable into a new one, such
that the distance between the mean and the bound we will get is significantly stretched. It answers the
question about how tight the bound we can get when having more information about the distribution
of the random variables.

We give Chernoff’s lemma here: let X4, X5, ... X}, independent indicator random variables where
E[X]=p;,0<p;<1l.letX =Y, X;andu = E[X].ThenV § > 0:

66 “
Pr(X > (1+ 86w < <W)

In words: the outcome concentrates around the min is very high —to the contrary, the probability of
deviating from the min should be very low.

25.1 CHERNOFF BOUND VARIANTS

Consider the following variants of Chernoff bounds (weaker but easier to state and to use):
_ns?
NPrX <1 -Hu<e 2,0<6<1

52

APr(X > +8)) <e 2,0<5<2e—1

25.2 ANALYSIS IN HIGH PROBABILITY OF RANDOMIZED QUICKSORT

As an example of application of Chernoff bounds, we do the analysis of Randomized Quicksort, in
which we remember the pivot is chosen at random (possibly, not very far from the median). This is a
LAS VEGAS algorithm, since it always sorts.

RandQuickSort(S) |S| = n, all distinct
if |S| < 1 then return (S)

p = RANDOM(S) // pick a “pivot” element uniformly at random from S

Written by Gabriel R.

52 Advanced Algorithms Theory Swiss Knife

Si={x€Ss.t.x <p} // 0(n) time
S, ={x€Ss.t.x>p} // 0(n) time
Zy = RandQuickSort(S;)

Z, = RandQuickSort(S,)

return (Z,,p, Z,)

We want to approximate as close as possible to the actual median. The generic event E can be
characterized as the “good choice” of the pivot between all the statistically possible choices.

So, calculating the cost of the algorithm:
- totalwork at each level is mostly linear,so < c*n

i
- depth of the recursion tree = min {integer is.t. G) n< 1} = [logs+(n)] = 0(log(n))
3

So, continuing: (Z)in <le G)i < % e (g)i >ne logg G)i =>i= logg(n)
= Tros(m) = 0(nlog(n))

Fix one root-leaf path P and the following lemma says, “with h.p. the path chosen in short”;
specifically shorter than log (n)”.

Lemma: Pr (|P| > a x logs(n)) <%
3

[—13 C‘mt‘w'f

We are trying to find the probability there is at least one big path around the mid value.
If this is true, we’re done, applying the very frequent/very famous following lemma.
Lemma (Union bound): for any random events Ej, ... Ex:

Pr(E; UE, U ..UEy) < Pr(E;) + Pr(E,) + -+ Pr (Ey)
If the lemma is true, it follows that:

- Giventhe event E; = the path p; has length > a * logs(n):
3

n
Pr (3 path > a * logi(n)) = Pr (U E) <union bound
3)
i=1

n

1 1
< Z Pr(E;) <iemma 1 * ﬁ = ﬁ
i=1

1
...Zl—ﬁ

= Tros(n) = 0(nlog(n)) w.h.p.

Written by Gabriel R.

53 Advanced Algorithms Theory Swiss Knife

Suppose p is always the median of S; then

2Tros (g) +0Mm), n>1

0, n<l1

Tros (n) =

So, basically:

- there are n nodes (excluding leaves associated to @) = < n paths root-leaf
- we will show these paths are not so long; using any method (Master theorem or whatever), we
get the same height of the tree

TRQS (n) —Master Theorem) (Tl log(n))

However, p is the median with probability %, which is very low.

(The following part is useful for the exam)

The event E can be characterized as “in the first | = a * logs(n) nodes of P there have been < logs(n)
lucky choices”. I’'m studying this last event: 3 3

- X,1<i<l=axlogs(n)

- X; =1lifatthe ith vertaex of P there is a lucky choice of the pivot

- Pr(X;=1) = % vi

- X, areindependent

We want the probability of P(Z§=1Xi) < logs+(n) to be bound (and to be very low).
3

Given X = Z§=1Xl-, its expected value is as follows:

l

u = E[X] =E[ZXL'] :zE[Xi] =Z

l

1_ _a1
z_z_zogé(")

l l
=1 =1 =1
Now, let’s apply the following Chernoff bound:

—H‘SZ
PriX<(1-Hu<e 2 ,0<6<1

)

(1 —=8)u = loga(n)
3

a
(1—6)5loga(n) = loga(n)
2 73 3
One possible choiceisa = 8,6 = %.

—%*logzl(n)*%
Pr (X <logs(n)) <e 3
3

~S.l0ga(n)+g
=e 3

—loga(n)
<e 3

Written by Gabriel R.

54 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

	2 Graph – General Definitions
	3 Depth First Search - DFS
	3.1 Description
	3.2 Algorithm
	3.3 Complexity
	3.4 Applications

	4 Breadth First Search - BFS
	4.1 Description
	4.2 Algorithm
	4.3 Complexity
	4.4 Applications

	5 Minimum Spanning Tree – MST
	5.1 Generic Greedy Algorithm
	5.2 Definitions

	6 Prim’s Algorithm
	6.1 Description
	6.2 Algorithm
	6.3 Complexity
	6.4 Example of Execution for Exam

	7 Efficient Prim – Heap Implementation
	7.1 Description
	7.2 Algorithm
	7.3 Complexity

	8 Kruskal’s Algorithm
	8.1 Description
	8.2 Algorithm
	8.3 Complexity
	8.4 Example of Execution for Exam

	9 Efficient Kruskal – Union-Find
	9.1 Description
	9.2 Algorithm
	9.3 Complexity

	10 Shortest Path
	11 Single-Source Shortest Path (SSSP)
	12 Non-negative weights – Dijkstra
	12.1 Description
	12.2 Algorithm
	12.3 Complexity

	13 Efficient Dijkstra – Heap
	13.1 Description
	13.2 Algorithm
	13.3 Complexity

	14 General Case: SSSP Problem
	15 Bellman-Ford’s Algorithm
	15.1 Description
	15.2 Algorithm
	15.3 Complexity

	16 All-Pairs Shortest Paths (APSP)
	17 Floyd-Warshall’s Algorithm
	17.1 Description
	17.2 Algorithm
	17.3 Complexity

	18 Maximum Flows
	19 Ford-Fulkerson’s Algorithm
	19.1 Description
	19.2 Algorithm
	19.3 Complexity

	20 NP-Hardness
	20.1 NP-Hard Problems
	20.2 NP-Hard Proofs

	21 Approximation Algorithms
	21.1 Examples of Approximations

	22 TSP & Metric TSP
	22.1 Travelling Salesperson Problem (TSP)
	22.2 Metric TSP
	22.2.1 Metric TSP is NP-Hard

	22.3 2-Approximation Algorithm for Metric TSP
	22.4 3/2 (or 1.5) Approximation Algorithm for Metric TSP

	23 Set Cover
	23.1 Set Cover is NP-Hard
	23.2 Greedy Approximation Algorithm

	24 Randomized Algorithms
	24.1 Classification of Randomized Algorithms
	24.2 Karger’s Algorithm for Minimum Cut

	25 Chernoff Bounds
	25.1 Chernoff Bound Variants
	25.2 Analysis in High Probability of Randomized Quicksort

