

ADVANCED ALGORITHMS THEORY SWISS KNIFE

GABRIEL ROVESTI

1 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

1 TABLE OF CONTENTS

2 Graph – General Definitions .. 5

3 Depth First Search - DFS ... 7

3.1 Description .. 7

3.2 Algorithm ... 7

3.3 Complexity ... 7

3.4 Applications ... 8

4 Breadth First Search - BFS ... 9

4.1 Description .. 9

4.2 Algorithm ... 9

4.3 Complexity ... 9

4.4 Applications ... 10

5 Minimum Spanning Tree – MST .. 11

5.1 Generic Greedy Algorithm ... 11

5.2 Definitions ... 11

6 Prim’s Algorithm ... 12

6.1 Description .. 12

6.2 Algorithm ... 12

6.3 Complexity ... 12

6.4 Example of Execution for Exam ... 12

7 Efficient Prim – Heap Implementation .. 13

7.1 Description .. 13

7.2 Algorithm ... 13

7.3 Complexity ... 14

8 Kruskal’s Algorithm ... 15

8.1 Description .. 15

8.2 Algorithm ... 15

8.3 Complexity ... 15

8.4 Example of Execution for Exam ... 15

9 Efficient Kruskal – Union-Find .. 16

9.1 Description .. 16

9.2 Algorithm ... 16

9.3 Complexity ... 16

10 Shortest Path ... 17

2 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

11 Single-Source Shortest Path (SSSP) .. 17

12 Non-negative weights – Dijkstra .. 18

12.1 Description .. 18

12.2 Algorithm ... 18

12.3 Complexity ... 18

13 Efficient Dijkstra – Heap .. 19

13.1 Description .. 19

13.2 Algorithm ... 19

13.3 Complexity ... 19

14 General Case: SSSP Problem .. 20

15 Bellman-Ford’s Algorithm ... 21

15.1 Description .. 21

15.2 Algorithm ... 21

15.3 Complexity ... 21

16 All-Pairs Shortest Paths (APSP) ... 22

17 Floyd-Warshall’s Algorithm ... 23

17.1 Description .. 23

17.2 Algorithm ... 23

17.3 Complexity ... 23

18 Maximum Flows ... 24

19 Ford-Fulkerson’s Algorithm .. 25

19.1 Description .. 25

19.2 Algorithm ... 26

19.3 Complexity ... 26

20 NP-Hardness ... 27

20.1 NP-Hard Problems ... 28

20.2 NP-Hard Proofs .. 28

21 Approximation Algorithms .. 36

21.1 Examples of Approximations ... 37

22 TSP & Metric TSP .. 39

22.1 Travelling Salesperson Problem (TSP) .. 39

22.2 Metric TSP .. 39

22.2.1 Metric TSP is NP-Hard ... 39

22.3 2-Approximation Algorithm for Metric TSP ... 41

22.4 3/2 (or 1.5) Approximation Algorithm for Metric TSP ... 42

3 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

23 Set Cover ... 46

23.1 Set Cover is NP-Hard .. 46

23.2 Greedy Approximation Algorithm... 47

24 Randomized Algorithms.. 48

24.1 Classification of Randomized Algorithms .. 48

24.2 Karger’s Algorithm for Minimum Cut .. 49

25 Chernoff Bounds .. 51

25.1 Chernoff Bound Variants... 51

25.2 Analysis in High Probability of Randomized Quicksort .. 51

4 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

Disclaimer

This file contains basically a refined version of full notes (and of my full theory file) to summarize the
theory content and make it clearly visible if possible in a proper way, concise but understandable. This

respects and follows, both chronologically and logically, the topics seen in 2023/2024.

5 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

2 GRAPH – GENERAL DEFINITIONS

• 𝐺 = (𝑉, 𝐸) as the graph itself
o 𝑉 = set of vertices (aka nodes)
o 𝐸 ⊆ 𝑉 𝑥 𝑉 (cartesian product = all) is a collection of edges

▪ an edge is a pair of vertices (𝑢, 𝑣)
• it indicates the connection between two nodes
• a connection of vertices allows for repetition

• directed graphs, which happens if (𝑢, 𝑣) ≠ (𝑣, 𝑢)
• undirected graphs, which happens if (𝑢, 𝑣) = (𝑣, 𝑢)
• arc = edge inside directed graphs (also called directed edges)
• given an edge 𝑒 = (𝑢, 𝑣)

o 𝑒 is incident on 𝑢 and 𝑣 (happens if vertex if one of endpoints in that edge)
o 𝑢 and 𝑣 are adjacent (there is an edge between the two vertices)

• neighbors of a vertex: all vertices 𝑣 s.t. (𝑢, 𝑣) ∈ 𝐸
o all vertices directly connected to a given vertex by an edge

• degree of a vertex 𝑣, denoted as 𝑑(𝑣) or 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)
o the number of edges incident on 𝑣

• path: 𝑢1, 𝑢2 … 𝑢𝑘 and (𝑢𝑖, 𝑢𝑖+1) ∈ 𝐸, ∀ 1 ≤ 𝑖 ≤ 𝑘
o finite/infinite sequence of nodes which joins a sequence of vertices via edges

• simple path: 𝑢𝑖 (all vertices) are all distinct
o same definition as above and vertices/nodes are all distinct/so are the edges
o e.g., 5,1,8,7,6,1,4 has 1 repeated twice so it’s not simple

• cycle: simple path s.t. 𝑢1 = 𝑢𝑘 (starts from a given vertex/ends at same node)
• subgraph: 𝐺′ = (𝑉′, 𝐸′) 𝑠. 𝑡.

o 𝑉′ ⊆ 𝑉
o 𝐸′ ⊆ 𝐸
o the edges of 𝐸′ are incident only on vertices of 𝑉′
o in words: it is a subset of the larger original graph

• spanning subgraph: a subgraph with 𝑉′ = 𝑉
o a subgraph which “spans” the original graph (so there are all the vertices)
o following other definitions

▪ subgraph obtained by edge deletions only but retaining all vertices
▪ so it’s a subgraph of 𝐺 with same vertex set as 𝐺

• connected graph: if ∀𝑢, 𝑣 ∈ 𝑉, ∃ a path from 𝑢 to 𝑣
• connected components: a partition of 𝐺 in subgraphs 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖), ∀ 1 ≤ 𝑖 ≤ 𝑘 𝑠. 𝑡.

o 𝐺𝑖 is connected ∀𝑖
o 𝑉 = 𝑉1 ∪ 𝑉2 ∪ … ∪ 𝑉𝑘
o 𝐸 = 𝐸1 ∪ 𝐸2 ∪ … ∪ 𝐸𝑘
o ∀𝑖 ≠ 𝑗 there is no edge between 𝑉𝑖 and 𝑉𝑗

• tree: connected graph without cycles
o any two vertices are connected by exactly one path

• forest: set of trees (disjoint)
o also = undirected graph in which any two vertices are connected by at most one path

6 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

• spanning tree: a spanning subgraph connected and without cycles
• spanning forest: a spanning subgraph without cycles

Generally, remember:

• 𝑛 = |𝑉| (number of nodes)
• 𝑚 = |𝐸| (number of edges)
• the size of a graph is 𝑛 + 𝑚

There are also multiple ways of representing:

• an adjacency list
o an array 𝐴 of 𝑛 lists, one ∀ vertex 𝑣 ∈ 𝑉 (consider the example below)
o each containing all the vertices adjacent to 𝑣 (represented by table below)

What if directed? Only vertices pointed for that vertex.

• Pro: space usage 𝜃(𝑛 + 𝑚) i.e. linear
• Con: no quick way to determine if a given edge is in the graph

• an adjacency matrix

o a 𝑛 𝑥 𝑛 matrix 𝐴 s.t. 𝐴[𝑖, 𝑗] = 1 if 𝑒𝑑𝑔𝑒(𝑖, 𝑗) ∈ 𝐸, 0 otherwise

• If graph is directed → the matrix is asymmetric
• If graph is undirected → the matrix is symmetric

In case of a weighted graph, each cell of the matrix has either the value of the edge weight (as number)
𝑤 or −/𝑛𝑢𝑙𝑙 to represent null costs. This kind of graph represents costs, capacities, etc.

• Pro: Quick to determine if a given edge is present
• Con: Space required is 𝜃(𝑛2) → can be superlinear in the input size

o if number of vertices increases, the space required by matrix grows quadratically

1 2,5
2 1,3,4,5
3 2,4
4 2,5,3
5 4,1,2

7 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

3 DEPTH FIRST SEARCH - DFS

3.1 DESCRIPTION

The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a
graph) and explores as far as possible along each branch before backtracking. It may find:

- new edges (discovery edge)
- non-tree edges, linked to ancestors (back edges)

Visit a vertex, then a neighbor of the vertex, then a neighbor of the neighbor – these are all neighbours,
classified with adjacency lists.

3.2 ALGORITHM

procedure 𝐷𝐹𝑆(𝐺, 𝑉)

𝑣𝑖𝑠𝑖𝑡 𝑣

𝐿𝑉[𝑣]. 𝐼𝐷 = 1

for all 𝑒 ∈ 𝐺. 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠(𝑣): do

 if 𝐿𝐸(𝑒). 𝑙𝑎𝑏𝑒𝑙 = 𝑛𝑢𝑙𝑙 then

 𝑤 = 𝐺. 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒(𝑣, 𝑒)

 if 𝐿𝑉[𝑤]. 𝐼𝐷 = 0 then

 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸

 𝐷𝐹𝑆(𝐺, 𝑤)

 else

 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝐵𝐴𝐶𝐾 𝐸𝐷𝐺𝐸

3.3 COMPLEXITY

Given:

• 𝑛𝑠: number of vertices of 𝐶𝑠 (one invocation ∀𝑣 ∈ 𝐶𝑠)
• 𝑚𝑠: number of edges of 𝐶𝑠 (costs related to node, excluding recursive invocations inside)

The complexity overall is:

𝜃 (∑ 𝑑(𝑣)

𝑣∈𝐶𝑠

) = 𝜃(𝑚𝑠)

More in general: 𝑂(𝑛 + 𝑚) – 𝑛 vertices and 𝑚 edges

8 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

3.4 APPLICATIONS

There are several:

- 𝑠 − 𝑡 path (between two generic vertices)
o done adding a 𝑝𝑎𝑟𝑒𝑛𝑡 field

- finding cycles
o use 𝑝𝑎𝑟𝑒𝑛𝑡 field on vertices and 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 on edges

- find connected components
o run the algorithm 𝑛 times
o consider all untouched vertices
o see which have back edges, meaning they “close” the cycle
o otherwise, return

- find a spanning tree

9 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

4 BREADTH FIRST SEARCH - BFS

4.1 DESCRIPTION

The algorithm is iterative, starts from a source vertex and visits all vertices connected to a specific
component, partitioning them in levels according to their distance. It still has discovery edges:

- but adds cross edges – which connect vertices at different levels

4.2 ALGORITHM

procedure 𝐵𝐹𝑆(𝐺, 𝑠)

𝑣𝑖𝑠𝑖𝑡(𝑠)

𝐿𝑉[𝑠]. 𝐼𝐷 = 1

𝐶𝑟𝑒𝑎𝑡𝑒 𝑎 𝑠𝑒𝑡 𝐿0 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑠

𝑖 = 0

while (! 𝐿𝑖 . 𝑖𝑠𝐸𝑚𝑝𝑡𝑦) do:

𝐶𝑟𝑒𝑎𝑡𝑒 𝑎 𝑠𝑒𝑡 𝑜𝑓𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝐿𝑖+1

for each 𝑣 ∈ 𝐿𝑖 do:

for each 𝑒 ∈ 𝐺. 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝐸𝑑𝑔𝑒𝑠(𝑣) do:

if 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝑛𝑢𝑙𝑙 then

𝑤 = 𝐺. 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒(𝑣, 𝑒)

if 𝐿𝑣[𝑤]. 𝐼𝐷 = 0 then

 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝐷𝐼𝑆𝐶𝑂𝑉𝐸𝑅𝑌 𝐸𝐷𝐺𝐸

𝑣𝑖𝑠𝑖𝑡 𝑤

𝐿𝑉[𝑤]. 𝐼𝐷 = 1

𝑎𝑑𝑑 𝑤 𝑖𝑛 𝐿𝑖+1

else

 𝐿𝐸[𝑒]. 𝑙𝑎𝑏𝑒𝑙 = 𝐶𝑅𝑂𝑆𝑆 𝐸𝐷𝐺𝐸

𝑖 = 𝑖 + 1

4.3 COMPLEXITY

𝑂(𝑛 + 𝑚)

10 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

4.4 APPLICATIONS

- Same as for DFS in 𝜃(𝑛 + 𝑚) time

So, again:

- 𝑠 − 𝑡 path (between two generic vertices)
o done adding a 𝑝𝑎𝑟𝑒𝑛𝑡 field

- finding cycles
o use 𝑝𝑎𝑟𝑒𝑛𝑡 field on vertices and 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 on edges

- find connected components
o run the algorithm 𝑛 times
o consider all untouched vertices
o see which have back edges, meaning they “close” the cycle
o otherwise, return

- find a spanning tree

11 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

5 MINIMUM SPANNING TREE – MST

- Input: a graph 𝐺 = (𝑉, 𝐸) undirected, connected and weighted
o A weight 𝑤: 𝐸 → ℝ
o defines 𝑤(𝑢, 𝑣) = cost of edge (𝑢, 𝑣)

- Output: a spanning tree 𝑇 ⊆ 𝐸 of 𝐺 s.t. 𝑤(𝑡) = ∑ 𝑤(𝑢, 𝑣)𝑢,𝑣∈𝑇 is minimized
o Goal is minimizing the sum for all weights of every edge of the tree

5.1 GENERIC GREEDY ALGORITHM

procedure 𝐺𝑒𝑛𝑒𝑟𝑖𝑐 − 𝑀𝑆𝑇(𝐺)

𝐴 = ∅

while 𝐴 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑓𝑜𝑟𝑚 𝑎 𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔 𝑡𝑟𝑒𝑒 do:

𝑓𝑖𝑛𝑑 𝑎𝑛 𝑒𝑑𝑔𝑒 (𝑢, 𝑣) 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑠𝑎𝑓𝑒 𝑓𝑜𝑟 𝐴 // 𝑐𝑟𝑢𝑐𝑖𝑎𝑙 𝑠𝑡𝑒𝑝

𝐴 = 𝐴 ∪ {(𝑢, 𝑣)} // 𝑎𝑑𝑑 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑡𝑜 𝐴

 return 𝐴 // 𝐴 𝑖𝑠 𝑎𝑛 𝑀𝑆𝑇

5.2 DEFINITIONS

- A cut of graph 𝐺 = (𝑉, 𝐸) is a partition of 𝑉 → (𝑆, 𝑉 ∖ 𝑆)
o in words, a partition of vertices into two disjoint subsets
o it can be done on one or more edges

- An edge (𝑢, 𝑣) ∈ 𝐸 crosses a cut (𝑆, 𝑉 ∖ 𝑆) if 𝑣 ∈ 𝑆 and 𝑣 ∈ 𝑉 ∖ 𝑆 (or viceversa)
o so, if its endpoints lie in different subsets of the partition defined by the cut

- A cut respects a set of edges 𝐴 if no edge of 𝐴 crosses the cut
- Given a cut, an edge that crosses the cut and is of minimum weight is called light edge (for that

cut) → they are useful, because when included in MSTs, they have minimum weight

There is also the minimum cut, for which we have 𝑑(𝑣) ≥ 𝑡 ∀𝑣 ∈ 𝑉, where 𝑡 is a generic size of graph.
Summing up all 𝑛 vertices, we obtain ∑ 𝑑(𝑣) ≥ 𝑡𝑛𝑣∈𝑉 , concluding it’s ∑ 𝑑(𝑣) = 2𝑚𝑣∈𝑉 .

12 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

6 PRIM’S ALGORITHM

6.1 DESCRIPTION

The algorithm is iterative and selects light edges at every step, growing a spanning tree from there.
Consider this gif to see the running. We have to preserve “safe edge” property – take only minimal
edges not already inside of the tree.

6.2 ALGORITHM

procedure 𝑃𝑟𝑖𝑚(𝐺, 𝑆)

𝑋 = {𝑆}

𝐴 = ∅

while 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 (𝑢, 𝑣) 𝑤𝑖𝑡ℎ 𝑢 ∈ 𝑋 𝑎𝑛𝑑 𝑣 ∉ 𝑋 do:

 (𝑢∗, 𝑣∗) = 𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑢𝑐ℎ 𝑒𝑑𝑔𝑒 (𝑎𝑘𝑎 𝑙𝑖𝑔ℎ𝑡 𝑒𝑑𝑔𝑒)

𝑎𝑑𝑑 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣∗ 𝑡𝑜 𝑋

𝑎𝑑𝑑 𝑒𝑑𝑔𝑒 (𝑢∗, 𝑣∗) 𝑡𝑜 𝐴

 return 𝐴

6.3 COMPLEXITY

𝑂(𝑚 ∗ 𝑛)

6.4 EXAMPLE OF EXECUTION FOR EXAM

Traversal: (𝑎, 𝑒), (𝑎, 𝑏), (𝑒, 𝑓), (𝑏, 𝑐), (𝑐, 𝑑)

https://en.wikipedia.org/wiki/Prim%27s_algorithm#/media/File:PrimAlgDemo.gif

13 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

7 EFFICIENT PRIM – HEAP IMPLEMENTATION

7.1 DESCRIPTION

The previous is not so efficient in large structures. The right kind of data structure to improve the
algorithm is a priority queue, implemented with a heap.

- Recap about this data structure
o 𝑖𝑛𝑠𝑒𝑟𝑡 → add an object to the heap (possibly fast)
o 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛 → remove an object with the smallest key (highest priority)
o 𝑑𝑒𝑙𝑒𝑡𝑒 → given a pointer to an object, remove it

- In a heap with 𝑛 objects, the complexity of these operations is 𝑂(𝑙𝑜𝑔(𝑛))

We can redefine the algorithm exploiting this efficient data structure basically with the same principle:

- consider a min heap starting from whatever vertex, which is the root
- from there, always extract the minimum value (means checking if it is min heap),

o then update the path

7.2 ALGORITHM

procedure 𝑃𝑟𝑖𝑚 (𝐺, 𝑠)

for each 𝑣 ∈ 𝑉: do

 𝑘𝑒𝑦[𝑢] = +∞

𝜋(𝑣) = 𝑁𝑈𝐿𝐿 // 𝜋 = 𝑝𝑎𝑟𝑒𝑛𝑡 𝑜𝑓 𝑣 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑏𝑒𝑖𝑛𝑔 𝑏𝑢𝑖𝑙𝑡

𝐾𝑒𝑦[𝑠] = 0

𝐻 = 𝑉

while 𝐻 ≠ 0 do:

𝑣∗ = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛(𝐻)

for each 𝑣 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣∗: do

if 𝑣 ∈ 𝐻 𝑎𝑛𝑑 𝑤(𝑣∗, 𝑣) < 𝐾𝑒𝑦(𝑣) then

𝜋(𝑣) = 𝑣∗

𝑑𝑒𝑙𝑒𝑡𝑒 𝑣 𝑓𝑟𝑜𝑚 𝐻

𝐾𝑒𝑦(𝑣) = 𝑤(𝑣∗, 𝑣)

𝑖𝑛𝑠𝑒𝑟𝑡 𝑣 𝑖𝑛𝑡𝑜 𝐻

14 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

7.3 COMPLEXITY

- 𝑖𝑛𝑖𝑡 → 𝑂(𝑛)
- 𝑤ℎ𝑖𝑙𝑒 → 𝑛 iterations
- 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛 → 𝑂(log(𝑛))

Total cost of only 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛 operations: 𝑂(𝑛 log(𝑛))

- for loop: executed 𝑂(𝑚) times in total (every vertex is explored)
o 𝑣 ∈ 𝐻 → 𝑂(1)

▪ this here is a simple check
o 𝐾𝑒𝑦(𝑣) = 𝑤(𝑣∗, 𝑣) → 𝑑𝑒𝑙𝑒𝑡𝑒 + 𝑖𝑛𝑠𝑒𝑟𝑡: 𝑂(2 log(𝑛)) = 𝑂(log(𝑛))

▪ two operations

Total cost of for loop: 𝑂(𝑚 log(𝑛)) (iterating for all adjacent nodes, quantity equal to node degree)

This way, the total complexity of the algorithm is 𝑂(𝑛 log(𝑛) + 𝑚 log(𝑛)) = 𝑂(𝑚 log(𝑛)) (since 𝐺 is
connected, we recall) → near-linear time.

15 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

8 KRUSKAL’S ALGORITHM

8.1 DESCRIPTION

It picks the minimum weighted edge at first and the maximum weighted edge at last. It sorts edges by
weight and then adds them continuously, preserving the “safe edge” property – take only the
unexplored. It does so preventing the adding of cycles.

8.2 ALGORITHM

procedure 𝐾𝑟𝑢𝑠𝑘𝑎𝑙(𝐺)

 𝐴 = ∅

 𝑆𝑜𝑟𝑡 𝑠𝑎𝑓𝑒 𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝐺 𝑏𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

for each 𝑒𝑑𝑔𝑒 𝑒 𝑖𝑛 𝑛𝑜𝑛 − 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡: do

if 𝐴 ∪ {𝑒} 𝑖𝑠 𝑎𝑐𝑦𝑐𝑙𝑖𝑐 then:

 𝐴 = 𝐴 ∪ {𝑒}

return 𝐴

8.3 COMPLEXITY

- sorting: 𝑂(𝑚 log(𝑛))
- for loop: check whether 𝑒 = (𝑢, 𝑣) closes a cycle is equivalent to check whether 𝐴 contains an

𝑢 − 𝑣 path → DFS on 𝐺 = (𝑉, 𝐴) → complexity: 𝑂(𝑛)

Total: 𝑂(𝑚 ∗ 𝑛) → 𝑂(𝑚 log(𝑛)) + 𝑂(𝑚 ∗ 𝑛) = 𝑂(𝑚 ∗ 𝑛)

8.4 EXAMPLE OF EXECUTION FOR EXAM

Traversal: (𝑎, 𝑒), (𝑐, 𝑑), (𝑎, 𝑏), (𝑒, 𝑓), (𝑏, 𝑐)

16 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

9 EFFICIENT KRUSKAL – UNION-FIND

9.1 DESCRIPTION

It can be implemented as fast as Prim’s, considering the most frequent operation here is cycle check
(equivalently, path check), which happens when an edge is added to 𝐴.

We create a new data structure supporting this operation fast and to do that, we use a structure called
Union-Find (also called disjoint set). This is a structure to merge disjoint sets (also non-overlapping in
their elements) of objects and supports at least three operations:

- Init: given an array 𝑋 of objects
o it creates a Union-Find data structure with each object 𝑥 ∈ 𝑋 in its own set

- Find: given an object 𝑥, return the name of the set that contains 𝑥
o depth: number of edges traversed by Find

- Union: given two objects 𝑥, 𝑦 merge the sets that contain 𝑥 and 𝑦 into a single set
o done whenever the sets are distinct
o if 𝑥, 𝑦 are already in the same set, this operation does nothing

9.2 ALGORITHM

procedure 𝐾𝑟𝑢𝑠𝑘𝑎𝑙(𝐺)

𝐴 = ∅

𝑈 = 𝑖𝑛𝑖𝑡(𝑉)

𝑠𝑜𝑟𝑡 𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝐸 𝑏𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

for each 𝑒𝑑𝑔𝑒 𝑒 = (𝑣, 𝑤) 𝑖𝑛 𝑛𝑜𝑛 − 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡: do

if 𝐹𝑖𝑛𝑑(𝑣) ≠ 𝐹𝑖𝑛𝑑(𝑤) then:

 𝐴 = 𝐴 ∪ {(𝑣, 𝑤)}

𝑈𝑛𝑖𝑜𝑛(𝑣, 𝑤)

return 𝐴

9.3 COMPLEXITY

- Init: 𝑂(𝑛)
- Sorting: 𝑂(𝑚 log(𝑛))
- 2𝑚 Find: 𝑂(𝑚 log(𝑛))
- 𝑛 − 1 Union: 𝑂(𝑛 log(𝑛)) → only when I go inside an “if” and when the edge is added
- 𝐴 updating: 𝑂(𝑛)

In total: 𝑂(𝑚 log(𝑛))

17 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

10 SHORTEST PATH

- Given a weighted graph, the length of a path 𝑝 = 𝑣1, 𝑣2, … 𝑣𝑘 is defined as 𝑙𝑒𝑛(𝑃) =

∑ 𝑤(𝑣𝑖, 𝑣𝑖+1)𝑘−1
𝑖=1

- A shortest path from a vertex 𝑢 to a vertex 𝑣 is a path with minimum length among all 𝑢 − 𝑣
paths

- The distance between 2 vertices 𝑠 and 𝑡, denoted as 𝑑𝑖𝑠𝑡(𝑠, 𝑡) is the length of a shortest path
from 𝑠 to 𝑡; if there is no path at all from 𝑠 to 𝑡 then 𝑑𝑖𝑠𝑡(𝑠, 𝑡) = +∞

The problem itself is the following:

- Given a directed, weighted graph and a source vertex 𝑠 ∈ 𝑉 and a destination 𝑡 ∈ 𝑉, compute
the shortest path from 𝑠 to 𝑣

11 SINGLE-SOURCE SHORTEST PATH (SSSP)

- input: a directed, weighted graph 𝐺 with edge weights 𝑤: 𝐸 → ℝ and a source vertex 𝑠 ∈ 𝑉
- output: 𝑑𝑖𝑠𝑡(𝑠, 𝑣), ∀𝑣 ∈ 𝑉

o shortest path to all destinations

There are two major cases to solve: a special one and a more general one.

18 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

12 NON-NEGATIVE WEIGHTS – DIJKSTRA

12.1 DESCRIPTION

Dijkstra's algorithm finds the shortest path from one vertex to all other vertices. It does so by
repeatedly selecting the nearest unvisited vertex and calculating the distance to all the unvisited
neighboring vertices.

- input: directed 𝐺, 𝑠 ∈ 𝑉, 𝑤: 𝐸 → ℝ≥0
- output: 𝑑𝑖𝑠𝑡(𝑠, 𝑣) = 𝑙𝑒𝑛(𝑣), ∀𝑣 ∈ 𝑉

o with 𝑙𝑒𝑛(𝑣) coming as shorthand form of the previous one

12.2 ALGORITHM

procedure 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺, 𝑠)

𝑋 = {𝑠}

𝑙𝑒𝑛(𝑠) = 0

𝑙𝑒𝑛(𝑣) = ∞

while 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 (𝑣, 𝑤) 𝑤𝑖𝑡ℎ 𝑣 ∈ 𝑋 𝑎𝑛𝑑 𝑤 ∉ 𝑋: do

(𝑣∗, 𝑤∗) = 𝑠𝑢𝑐ℎ 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 𝑙𝑒𝑛(𝑣) + 𝑤(𝑣, 𝑤)

 𝑎𝑑𝑑 𝑤∗ 𝑡𝑜 𝑋

 𝑙𝑒𝑛(𝑤∗) = 𝑙𝑒𝑛(𝑣∗) + 𝑤(𝑣∗, 𝑤∗)

12.3 COMPLEXITY

𝑂(𝑚 ∗ 𝑛)

19 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

13 EFFICIENT DIJKSTRA – HEAP

13.1 DESCRIPTION

Normal implementation uses adjacency list. This implementation improves efficiency by using a
priority queue (usually implemented as a binary heap) to select the vertex with the smallest tentative
distance efficiently. The implementation is almost identical to Prim with heaps.

13.2 ALGORITHM

procedure 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺, 𝑠) (almost identical to Prim’s implementation with heaps)

𝑋 = {𝑠}

𝐻 = ∅

𝑘𝑒𝑦(𝑠) = 0

for each 𝑣 ≠ 𝑠: do

 𝑘𝑒𝑦(𝑣) = ∞

for each 𝑣 ∈ 𝑉: do

 𝑖𝑛𝑠𝑒𝑟𝑡 𝑣 𝑖𝑛𝑡𝑜 𝐻

while 𝐻 𝑖𝑠 𝑛𝑜𝑛 − 𝑒𝑚𝑝𝑡𝑦: do

𝑤∗ = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑀𝑖𝑛(𝐻)

 𝑎𝑑𝑑 𝑤∗ 𝑡𝑜 𝑋

𝑙𝑒𝑛(𝑤∗) = 𝑘𝑒𝑦(𝑤∗)

for each 𝑒𝑑𝑔𝑒 (𝑤∗, 𝑦) 𝑠. 𝑡. 𝑦 ∉ 𝑋: do

 𝑑𝑒𝑙𝑒𝑡𝑒 𝑦 𝑓𝑟𝑜𝑚 𝐻

 𝑘𝑒𝑦(𝑦) = min {𝑘𝑒𝑦(𝑦), 𝑙𝑒𝑛(𝑤∗) + 𝑤(𝑣∗, 𝑤∗)}

 𝑖𝑛𝑠𝑒𝑟𝑡 𝑦 𝑖𝑛𝑡𝑜 𝐻

13.3 COMPLEXITY

- considering graph as adjacency list, 𝑛 vertices and 𝑚 edges
- log(𝑛) iterations because of heap usage

Total number of operations: 𝑂((𝑛 + 𝑚) log(𝑛) (there are 𝑂(𝑛 + 𝑚) operations on heaps)

20 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

14 GENERAL CASE: SSSP PROBLEM

We reformulate the previous problem a bit:

- Input: a directed weighted graph 𝐺 = (𝑉, 𝐸) and a source vertex 𝑠 ∈ 𝑉
- Output: one of the following

o 𝑑𝑖𝑠𝑡(𝑠, 𝑣) ∀ vertex 𝑣 ∈ 𝑉
o a declaration that 𝐺 contains a negative cycle

Need to forbid negative cycles in shortest paths, they lead to infinitely small paths, which is an NP-
Hard problem.

The main Dijkstra problems are two:

- It never revisits/updates its decisions, but it should for all vertices!
o Once a vertex is marked as “closed”, we will never develop this node again
o If we have a vertex in open such that its cost is minimal - by adding any positive number

to any vertex - the minimality will never change
o Without the constraint on positive numbers - the above assumption is not true
o It assumes them to be positive to make the algorithm run faster and does this to avoid

considering paths which can’t be shorter
- 𝑙𝑒𝑛(𝑣) should be an estimated distance, which needs to be updated for every vertex

o how many times? ≤ 𝑛 − 1 edges ⇒ 𝑛 − 1 times should be enough
o maximum number of edges in a simple path between any two vertices

21 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

15 BELLMAN-FORD’S ALGORITHM

15.1 DESCRIPTION

- Input: A directed graph 𝐺 with edge weights 𝑤: 𝐸 → ℝ and a source vertex 𝑠 ∈ 𝑉
- Output: Either 𝑑𝑖𝑠𝑡(𝑠, 𝑣) ∀𝑣 ∈ 𝑉 or a declaration that 𝐺 contains a negative cycle

The algorithms is used when the graph might possess negative weights and can even detect negative
cycles. If the graph contains one, there is no cheapest path, instead one can make it cheaper by one
more walk around said negative cycle (in 𝑛 − 1 iterations it reaches a fix-point, if it doesn’t it means a
negative cycle exists). Still, it’s slower compared to Dijkstra.

15.2 ALGORITHM

procedure 𝐵𝑒𝑙𝑙𝑚𝑎𝑛 − 𝐹𝑜𝑟𝑑 (𝐺, 𝑠)

 𝑙𝑒𝑛(𝑠) = 0

 𝑙𝑒𝑛(𝑣) = ∞ ∀𝑣 ≠ 𝑠

for 𝑛 − 1 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

 for each 𝑒𝑑𝑔𝑒 (𝑢, 𝑣) ∈ 𝐸: do

 𝑙𝑒𝑛(𝑣) = min{𝑙𝑒𝑛(𝑣), 𝑙𝑒𝑛(𝑢) + 𝑤(𝑢, 𝑣)}

 for each 𝑒𝑑𝑔𝑒 (𝑢, 𝑣) ∈ 𝐸: do

 if 𝑙𝑒𝑛(𝑣) > 𝑙𝑒𝑛(𝑢) + 𝑤(𝑢, 𝑣) then

 return “𝐺 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑦𝑐𝑙𝑒”

15.3 COMPLEXITY

𝑂(𝑚 ∗ 𝑛)

22 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

16 ALL-PAIRS SHORTEST PATHS (APSP)

- Input: A directed, weighted graph 𝐺 = (𝑉, 𝐸)
- Output: One of the following:

o 𝑑𝑖𝑠𝑡(𝑢, 𝑣) ∀ ordered vertex pair
o a declaration that 𝐺 contains a negative cycle

▪ this can be problematic in finding a shortest path
▪ now we would have to output 𝑛2 shortest paths

Consider:

- If we use Bellman-Ford - very high complexity → 𝑂(𝑚 ∗ 𝑛2)
o Using dynamic programming, the complexity can be reduced to 𝑂(𝑛3 log(𝑛))
o This holds rewriting B-F recurrence controlling the allowable size of the input

23 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

17 FLOYD-WARSHALL’S ALGORITHM

17.1 DESCRIPTION

It’s used to find the shortest paths between all pairs of nodes in a weighted graph, with positive or
negative edges.

- instead of restricting the number of edges allowed in a solution, restrict the identities of the
vertices that are allowed in a solution

o in other words, now paths can pass through only certain vertices
- Basically, it compares many possible paths through the graph between each pair of vertices

It iterates on 3 vertices: 𝑢, 𝑣, 𝑘 i n 3 nested loops, testing whether using 𝑘 in the path is better.

17.2 ALGORITHM

procedure 𝐹𝑙𝑜𝑦𝑑 − 𝑊𝑎𝑟𝑠ℎ𝑎𝑙𝑙(𝐺)

 𝑙𝑎𝑏𝑒𝑙 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑉 = {1,2, … , 𝑛} 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦

 𝐴 = 𝑛 𝑥 𝑛 𝑥 (𝑛 + 1) 𝑎𝑟𝑟𝑎𝑦

 for 𝑢 = 1 to 𝑛: do

 for 𝑣 = 1 to 𝑛: do

 if 𝑢 = 𝑣 then 𝐴[𝑢, 𝑣, 0] = 0

 else if (𝑢, 𝑣) ∈ 𝐸 then 𝐴[𝑢, 𝑣, 0] = 𝑤(𝑢, 𝑣)

 else 𝐴[𝑢, 𝑣, 0] = +∞

 for 𝑘 = 1 to 𝑛: do

 for 𝑢 = 1 to 𝑛: do

 for 𝑣 = 1 to 𝑛: do

 𝐴[𝑢, 𝑣, 𝑘] = min {𝐴[𝑢, 𝑣, 𝑘 − 1], 𝐴[𝑢, 𝑘, 𝑘 − 1] + 𝐴[𝑘, 𝑣, 𝑘 − 1]}

 for 𝑢 = 1 to 𝑛: do

 if 𝐴[𝑢, 𝑢, 𝑛] < 0 then return "𝐺 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑦𝑐𝑙𝑒"

17.3 COMPLEXITY

𝑂(𝑛3)

24 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

18 MAXIMUM FLOWS

- a flow network is a directed graph 𝐺 = (𝑉, 𝐸) where each edge has a capacity 𝑐(𝑒) ∈ ℝ+, along
with a designated source 𝑠 ∈ 𝑉 and sink 𝑡 ∈ 𝑉

o for convenience, write 𝑐(𝑒) = 0 if 𝑒 ∉ 𝐸, no edges enter 𝑠 and no edges leave 𝑡

- a flow is a function 𝑓: 𝐸 → ℝ+ satisfying the following constraints (how much stuff I send
through the edges in general)

o (capacity) ∀𝑒 ∈ 𝐸, 𝑓(𝑒) ≤ 𝑐(𝑒) – value of the flow at most capacity of that edge
o (conservation) ∀𝑢 ∈ 𝑉 ∖ {𝑠, 𝑡} we have

∑ 𝑓(𝑣, 𝑢) = ∑ 𝑓(𝑢, 𝑣)

𝑣∈𝑉 𝑠.𝑡.(𝑢,𝑣)∈𝐸𝑢∈𝑉 𝑠.𝑡.(𝑣,𝑢)∈𝐸

o the amount of flow going in nodes must be equal to the flow going out from those
(conservation of flows)

▪ initially, such flow is 0, which is “how much we can pass on the edge”

- the value of a flow is

|𝑓| = ∑ 𝑓(𝑠, 𝑣)

𝑣∈𝑉 𝑠.𝑡.(𝑠,𝑣)∈𝐸

o basically, the sum of all flows going in and out vertices thanks to edges
o as a matter of fact, the amount of stuff traveling from source to sink
o such flow has to be less than or equal to the capacity

As for the problem itself:

- given a flow network, find a flow 𝑓 of maximum value. Such flow is measured on the maximum
value received in a sink node

25 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

19 FORD-FULKERSON’S ALGORITHM

19.1 DESCRIPTION

Given a flow network 𝐺 a flow 𝑓, the residual network of 𝐺 w.r.t (with respect to) flow 𝑓, 𝐺𝑓, is a
network with vertex set 𝑉 and with edge set 𝐸𝑟 as follows:

- for every edge 𝑒 = (𝑢, 𝑣) in 𝐺
o if 𝑓(𝑒) < 𝑐(𝑒), add 𝑒 to 𝐺𝑓 with capacity 𝐶𝑓(𝑒) = 𝑐(𝑒) − 𝑓(𝑒)
o if 𝑓(𝑒) > 0, add another edge (𝑣, 𝑢) to 𝐺𝑓 with capacity 𝐶𝑓(𝑒) = 𝑓(𝑒)

The Ford-Fulkerson (F-F) algorithm repeatedly finds an 𝑠 − 𝑡 path 𝑃 in 𝐺𝑓 (e.g., using BFS) and uses 𝑃
to increase the current flow.

- 𝑃 is called augmenting path
o This is a path of edges in the residual graph with unused capacity greater than 0 from

the source 𝑠 to the sink 𝑡
o This can only flow on edges not fully saturated yet

- In an augmenting path, the bottleneck is the smallest edge on the path. We can use this one to
augment the flow along the path

In figure below, in orange the augmenting path, in light-blue as written the bottleneck:

- Augmenting the flow means updating the flow values along the augmenting path (left)

o For forward edges, this means increasing the flow by the bottleneck value
- When augmenting the flow along the augmenting path

o you also need to decrease the flow along each residual edge (backward edges) by the
bottleneck value (right)

o residual edges exist to “undo” bad augmenting paths which do not lead to a maximum
flow

26 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

The residual graph, so, contains also residual edges. This algorithm continues to find augmenting
paths and augments the flow until no more augmenting paths exist.

- The algorithm simply takes in every iteration the bottleneck
- Then considers the bottleneck and keeps incrementing selecting every possible 𝑠 − 𝑡 path

until max flow is reached
- Each iteration is then reported into the residual graph, accounting for the bottleneck

o e.g. if we chose 7/11 in an iteration, in the next iteration
▪ 4 forward (remaining)
▪ 7 backward (spent)

19.2 ALGORITHM

procedure 𝐹𝑙𝑜𝑦𝑑 − 𝑊𝑎𝑟𝑠ℎ𝑎𝑙𝑙(𝐺)

 𝑙𝑎𝑏𝑒𝑙 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑉 = {1,2, … , 𝑛} 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦

 𝐴 = 𝑛 𝑥 𝑛 𝑥 (𝑛 + 1) 𝑎𝑟𝑟𝑎𝑦

 for 𝑢 = 1 to 𝑛: do

 for 𝑣 = 1 to 𝑛: do

 if 𝑢 = 𝑣 then 𝐴[𝑢, 𝑣, 0] = 0

 else if (𝑢, 𝑣) ∈ 𝐸 then 𝐴[𝑢, 𝑣, 0] = 𝑤(𝑢, 𝑣)

 else 𝐴[𝑢, 𝑣, 0] = +∞

 for 𝑘 = 1 to 𝑛: do

 for 𝑢 = 1 to 𝑛: do

 for 𝑣 = 1 to 𝑛: do

 𝐴[𝑢, 𝑣, 𝑘] = min {𝐴[𝑢, 𝑣, 𝑘 − 1], 𝐴[𝑢, 𝑘, 𝑘 − 1] + 𝐴[𝑘, 𝑣, 𝑘 − 1]}

 for 𝑢 = 1 to 𝑛: do

 if 𝐴[𝑢, 𝑢, 𝑛] < 0 then return "𝐺 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑦𝑐𝑙𝑒"

19.3 COMPLEXITY

- Assume capacities are integers; then
o the flow value increases by ≥ 1 is each iteration
o the complexity of each iteration is 𝑂(𝑚)

Total complexity is 𝑂(𝑚 ∗ |𝑓∗|), where 𝑓∗ is a max flow

27 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

20 NP-HARDNESS

There are problems which can be solved in linear time:

- e.g. Eulerian circuit – a graph where edges are traversed all at once

There are problems which can be solved in polynomial time:

- e.g. Minimum Spanning Tree (MST), minimizing the weights inside all tree

There are also problems where no polynomial algorithms are present to solve the problem:

- e.g. Traveling Salesperson Problem (TSP), Hamiltonian Circuit

We define the following complexity classes:

1) 𝑃 is the set of decision problems that can be solved in polynomial time
2) 𝑁𝑃 is the set of decision problems with the following property:

a. if the answer is YES, then there is a proof of this fact (called “certificate”) that can be
checked in polynomial time

3) 𝑐𝑜 − 𝑁𝑃, which is essentially the opposite of 𝑁𝑃:
b. property: if the answer is NO, then there is a proof of this fact that can be checked in

polynomial time

Other features of problems:

- a problem is said to be NP-Hard if a polynomial time algorithm for this one would imply the
existence of a polynomial time algorithm for every problem in NP

- More formally, a problem is NP-Hard if every problem in NP reduces in polynomial time to it
a. unless 𝑃 = 𝑁𝑃, which is not yet solved
b. if a problem is NP-Hard, it provides evidence the problem may not be in 𝑃

- a problem is NP-Complete if it’s both in NP and NP-Hard
a. e.g. the Cook-Levin Theorem for Boolean Satisfiability problem (SAT)

i. made up of clauses with conjunction/disjunction, usually 3 (3-SAT)

We use a reduction given it’s a very powerful tool:

- a reduction is an algorithm for transforming one problem into one another
- a problem 𝐴 reduces to 𝐵 if there is an algorithm able to solve 𝐵 can be translated into one

which solves 𝐴
- remember reductions works from 𝑌 (problem I know to be hard) to 𝑋 (new problem)
- the reduction is FROM 𝑌

a. I already know it’s NP-hard
- to 𝑋

a. the “new” problem

28 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

20.1 NP-HARD PROBLEMS

- Independent Set
a. given a graph 𝐺 = (𝑉, 𝐸) an independent set in 𝐺 is a subset 𝐼 ⊆ 𝑉 with no edges

between them
- (Maximum) Independent Set (this one will be referred to as simply “Independent Set” meaning

the latter)
a. compute an independent set of maximum size

- SAT/3-SAT (thanks to Cook-Levin Theorem)
a. SAT - Boolean satisfiability of a formula (has to be equal to TRUE)
b. 3-SAT - Boolean satisfiability of a formula made by 3-clauses

- Hamiltonian Circuit
a. a cycle that traverses all the vertices only once

- (Maximum) Clique
a. largest complete subgraph

- (Minimum) Vertex cover
a. minimum number of vertices that “touches” all edges

Examples of reductions:

- Using Hamiltonian circuit to solve TSP → 𝐻𝑎𝑚 ≤𝑝 𝑇𝑆𝑃
a. If we had a fast algorithm for TSP, we would also solve Hamiltonian problem

- Using 3SAT to solve Independent Set → 3𝑆𝐴𝑇 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑆𝑒𝑡
a. If we had a fast algorithm for Independent Set, we would also solve 3SAT

- Using Independent Set to solve Clique → 𝐶𝑙𝑖𝑞𝑢𝑒 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑆𝑒𝑡
- Using Independent Set to solve Vertex Cover → 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑆𝑒𝑡

20.2 NP-HARD PROOFS

- Theorem: TSP (Traveling Salesperson Problem) is NP-Hard

- Proof: Reduction from Hamiltonian circuit to TSP (𝐻𝑎𝑚 ≤𝑝 𝑇𝑆𝑃)

Wait a minute: TSP is not a decision problem!

No worries. Define 𝑇𝑆𝑃 as:

- input: 𝐺 = (𝑉, 𝐸) complete, undirected, weighted graph 𝑘 ∈ ℝ
- output: ∃ in 𝐺 a Hamiltonian circuit of cost ≤ 𝑘?

We could try to use all possible 𝑘 values, but 𝑘 is not guaranteed to be polynomial; using only the
cycles will not work either.

What we actually do: Pick an arbitrary input instance for 𝐻𝑎𝑚. and create the following input for TSP:

- 𝐺′ = (𝑉, 𝐸′) complete, undirected, weighted graph with:

𝑤(𝑒 ∈ 𝐸′) = {
1, 𝑖𝑓 𝑒 ∈ 𝐸

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

29 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

If we use 𝑘 = 𝑚 this reduction takes poly-time ((𝑂(𝑛2)). Then:

- if 𝐺 has an Hamiltonian circuit, then the TSP algorithm run on 𝐺′ returns an Hamiltonian circuit
with cost 𝑛

- if 𝐺 doesn’t have a Hamiltonian circuit, then any Hamiltonian circuit in 𝐺′ must have ≥ 1 edge
not in 𝐺, hence of weight ∞. Hence, in this case, a TSP algorithm run on 𝐺′ returns a
Hamiltonian circuit of cost > 𝑛

If we had a fast algorithm for TSP we would also solve the Hamiltonian circuit problem.

Reduction from 3𝑆𝐴𝑇 (problem in logic) to 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡 (problem in graphs) →
3𝑆𝐴𝑇 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑆𝑒𝑡

They seem totally unrelated problems, but let’s see what we have to do (figure here is from
“Algorithms” book of Jeff Erickson, suggested in particular for the whole NP-Hardness chapter):

What we are conjecturing is the following:

Basically, the presence of an independent set in the constructed graph corresponds to a satisfying
truth assignment for the 3SAT instance.

Let’s see the main ideas (figure representing the scenario):

- pick an arbitrary 3𝐶𝑁𝐹 Boolean formula 𝑓 with 𝑘 clauses

(𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (𝑏 ∨ ¬𝑐 ∨ ¬𝑑) ∧ (¬𝑎 ∨ 𝑐 ∨ 𝑑) ∧ (𝑎 ∨ ¬𝑏 ∨ ¬𝑑)

- vertices: each vertex represents one literal in 𝑓
a. a group of 3 vertices represents a clause (one of the 𝑘 clauses)

i. assignment request = choose vertices and make a request

30 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

- edges:
a. We add an edge between a literal and its inverse, for all the literals
b. We add an edge between every pair of vertices that are in the same group

There are two ways to think about 3SAT: (this reasoning coming from here)

- 1. Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true,
that is each clause evaluates to true

- 2. Pick a literal from each clause and find a truth assignment to make all of them true. You will
fail if two of the literals you pick are in conflict, i.e., you pick 𝑥𝑖 and ¬𝑥𝑖

The reduction works this way:

- the graph will have one vertex for each literal in a clause
- connect the 3 literals in a clause to form a triangle; the independent set will pick at most one

vertex from each clause, which will correspond to the literal to be set to true

- connect 2 vertices if they label complementary literals; this ensures that the literals

corresponding to the independent set do not have a conflict

- Take 𝑘 to be the number of clauses, ensuring they are all “covered”

https://courses.engr.illinois.edu/cs374/fa2020/lec_prerec/23/23_2_0_0.pdf

31 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

Remember what satisfiable means:

- it asks whether the variables of a given Boolean formula can be consistently replaced by the
values TRUE or FALSE in such a way that the formula evaluates to TRUE

1) idea: independent set represents conflicts ⇒ add an edge between every pair of vertices that
are inconsistent (asking for opposite assignments to the same variable)

a. in words: if you choose one vertex, it means it’s part of a clause
b. you have to choose other two vertices which are sure to be different because they are a

different independent set
c. if you choose one vertex, you have to choose the complement

i. in order to realize the AND inside the formula

Observation: an independent set with ≥ 1 vertex in each group gives a satisfying truth assignment →
should look for indipendent sets of size ≥ 𝑘 to say “YES, 𝑓 it’s satisfiable”.

Issue: an independent set now is free to recruit multiple vertices from a group, so I might output “YES,
𝑓 is satisfiable” even if this not true! ⇒ idea: force the recruitment of one vertex per group.

2) add one edge between every pair of vertices that one in the same group

Claim: 𝐺 contains an independent set of size exactly 𝑘 ⇔ the formula 𝑓 is satisfiable

Proof:

1) suppose 𝑓 is satisfiable. Pick any satisfying assignment. Each clause in 𝑓 has ≥ 1 𝑇𝑅𝑈𝐸
literal. Thus, we can choose a subset 𝑆 of 𝑘 vertices in 𝐺 that contains exactly one vertex per
group such that the corresponding 𝑘 literals are all 𝑇𝑅𝑈𝐸. The set 𝑆 is an independent set
because it does not contain both endpoints of any edge of a group, nor of any edge that
connects inconsistent literals (as it is derived from a consistent truth assignment)

2) suppose 𝐺 contains an independent set of size 𝑘. Each vertex in 𝑆 must be in a different group.
Assign 𝑇𝑅𝑈𝐸 to each literal of 𝑆. Since inconsistent literals are connected by an edge, this
assignment is consistent. Since 𝑆 contains 1 verftex per group, each clause in 𝑓 contains (at
least) one 𝑇𝑅𝑈𝐸 literal ⇒ 𝑓 is satisfiable

32 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

- (Maximum) Clique: compute the longest complete subgraph
a. other name for a complete graph (from now on, the problem will be called Clique)
b. below, a useful figure to clearly see the problem

Show that Clique is NP-Hard.

Solution (a nice graphical explanation here)

Decision version:

- Input: < 𝐺 = (𝑉, 𝐸), 𝑘 >
- Output: ∃ in 𝐺 a clique of size 𝑘?

We operate a reduction from Maximum Independent Set (Ham. circuit is not
really related to it; as you can see here, one can use 3SAT in order to show
Clique is NP-complete). Figure here shows Independent Set.

- Intuition
a. clique: vertices with all edges between them
b. maximum independent set: vertices with no edges between them

- Definition

a. given a graph 𝐺 = (𝑉, 𝐸), its edge-complement 𝐺 = (𝑉, 𝐸) has the same vertex 𝑉 and

an edge set 𝐸 such that (𝑢, 𝑣) ∈ 𝐸 ⇔ (𝑢, 𝑣) ∉ 𝐸 (so, no common edges)

- Observation

a. a set of vertices 𝑆 is independent in 𝐺 ⇔ 𝑆 is a clique in 𝐺 ⇒ the largest independent

set in 𝐺 has the same size as the largest clique in 𝐺

To make it super complete, let’s draw the schema of what we are doing – takes 𝑂(𝑛2) time, givemn the
constant work needed to traverse all edges and vertices:

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/clique_to_independentSet.html
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect1108.pdf

33 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

Definition: a vertex cover of a graph is a set of vertices that includes that at least
one endpoint of every edge of the graph

b. Side figure represents such, to be clearer to you

Another problem is:

- (Minimum) Vertex Cover: compute the smallest vertex in a given graph
a. From now on, only called Vertex Cover

Show that Vertex Cover is NP-Hard.

Solution (once again, a nice graphical explanation of this one here)

Decision version:

- Input: < 𝐺 = (𝑉, 𝐸), 𝑘 >
- Output: ∃ in 𝐺 a vertex cover of size 𝑘?

We operate a reduction from Maximum Independent Set (once again, this is the most similar problem
to the one we are proving)

- Observation
a. a set of vertices 𝑆 is independent in 𝐺 ⇔ 𝑉 ∖ 𝑆 is a vertex cover of 𝐺

i. in blue there is an independent set (actually the biggest one)
ii. the other ones are the vertex cover

⇒ the longest independent set in 𝐺 has size 𝑛 − 𝑘, where 𝑘 is the size of the smallest
vertex cover of 𝐺

Independent set:

- Input: < 𝐺 = (𝑉, 𝐸), 𝑛 − 𝑘 >
- Output: ∃ in 𝐺 an independent set of size 𝑛 − 𝑘?

Once again, let’s represent this in a complete way:

Exercise

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/independentSet_to_vertexCover.html

34 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

- Show that:
a. 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡
b. 𝐶𝑙𝑖𝑞𝑢𝑒 ≤𝑝 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟

⇒ these 3 problems are equivalent.

Solution (official = shorter)

- “same” as 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡 ≤𝑝 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟

- we can consider the following figure for this one
a. consider a clique of size 4 in the middle (left)
b. if you take the complement of this one (right)

- 𝐺 has a clique of size 𝑘 ⇔ 𝐺 has a vertex over of size 𝑛 − 𝑘
a. proof: see the book (§ - p. 1106 of 4th edition – theorem 34.12)

Solution (longer and better explained)

a. Suppose that we have an efficient algorithm for solving Independent Set, it can simply be used
to decide whether 𝐺 has a vertex cover of size at most 𝑘, by asking it to determine whether G
has an independent set of size at least 𝑛 – 𝑘

35 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

Given an instance of the Vertex Cover problem, consisting of a graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘
representing the size, we construct an instance of the Independent Set problem as follows:

1. Let 𝐺′ = 𝐺 (i.e., the graph for the Independent Set instance is the same as the original graph
G).

2. Let 𝑘′ = |𝑉| − 𝑘 (i.e., the target size of the independent set is the number of vertices in 𝐺 minus
the size of the vertex cover 𝑘).

To show that this reduction is correct, we need to prove the following:

1. If 𝐺 has a vertex cover of size ≤ 𝑘, then 𝐺′ has an independent set of size ≥ 𝑘′.

2. If 𝐺′ has an independent set of size ≥ 𝑘′, then G has a vertex cover of size ≤ 𝑘.

Let’s prove both (1) and (2):

- Suppose 𝐶 is a vertex cover of size ≤ 𝑘 in 𝐺. Then, the set 𝑉 \ 𝐶 is an independent set in
𝐺′ (since 𝐶 covers all the edges, no two vertices in 𝑉 \ 𝐶 can be adjacent). Furthermore,
|𝑉 \ 𝐶| ≥ |𝑉| − 𝑘 = 𝑘′

- Suppose 𝑆 is an independent set of size ≥ 𝑘′ in 𝐺′. Then, the set 𝑉 \ 𝑆 is a vertex cover in 𝐺
(since 𝑆 is independent, every edge must have at least one endpoint in 𝑉 \ 𝑆). Furthermore,
|𝑉 \ 𝑆| ≤ |𝑉| − 𝑘′ = 𝑘.

b. To show that 𝐶𝑙𝑖𝑞𝑢𝑒 ≤𝑝 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟, we need to provide a polynomial-time reduction from
the Clique problem to the Vertex Cover problem. Here's one way to construct the reduction:

Given an instance of the Clique problem, consisting of a graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘, we
construct an instance of the Vertex Cover problem as follows:

1. Let 𝐺′ = 𝐺 (i.e., the graph for the Vertex Cover instance is the same as the original graph G).

2. Let 𝑘′ = |𝑉| − 𝑘 (i.e., the target size of the vertex cover is the number of vertices in 𝐺 minus the
size of the clique 𝑘).

To show that this reduction is correct, we need to prove the following:

1. If 𝐺 has a clique of size ≥ 𝑘, then 𝐺′ has a vertex cover of size ≤ 𝑘′.

2. If 𝐺′ has a vertex cover of size ≤ 𝑘′, then 𝐺 has a clique of size ≥ 𝑘.

Proof of (1): Suppose 𝐶 is a clique of size ≥ 𝑘 in 𝐺. Then, the set 𝑉 \ 𝐶 is a vertex cover in 𝐺′ (since 𝐶 is
a clique, every edge must have at least one endpoint in 𝑉 \ 𝐶). Furthermore, |𝑉 \ 𝐶| ≤ |𝑉| − 𝑘 = 𝑘′.

Proof of (2): Suppose 𝑆 is a vertex cover of size ≤ 𝑘′ in 𝐺′. Then, the set 𝑉 \ 𝑆 is a clique in 𝐺 (since 𝑆 is
a vertex cover, every edge must have both endpoints in 𝑉 \ 𝑆, which means 𝑉 \ 𝑆 is a clique).
Furthermore, |𝑉 \ 𝑆| ≥ |𝑉| − 𝑘′ = 𝑘.

36 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

21 APPROXIMATION ALGORITHMS

These kinds of algorithms are are efficient algorithms that find approximate solutions to optimization
problems (in particular NP-hard problems) with provable guarantees on the distance of the returned
solution to the optimal one. They solve problems not solvable in polynomial time using approximation.

An optimization problem can be described as follows:

Π: 𝐼 𝑥 𝑆

where Π = approximation problem, 𝐼 = set of inputs and 𝑆 = set of solutions.

𝑐: 𝑆 → ℝ+

Above, the cost function 𝑐 maps each solution to a positive real number.

∀𝑖 ∈ 𝐼, 𝑆(𝑖) = {𝑠 ∈ 𝑆: 𝑖 Π𝑠}

Above, the the set of feasible solutions, and our goal follows.

𝑠∗ ∈ 𝑆(𝑖) 𝑎𝑛𝑑 𝑐(𝑠∗) = min/ max {𝑐(𝑆(𝑖))}

Here, we want to find the best solution 𝑠∗ for a minimization/maximization problem. Specifically, we
want to find it for the specific instance of that problem (𝑖Π𝑠).

Definition: Let Π be an optimization problem and let 𝐴Π be an algorithm for Π that returns, ∀𝑖 ∈ 𝐼, 𝐴Π ∈

𝑆𝑖. We say that 𝐴Π has an approximation factor of 𝜌(𝑛) if ∀𝑖 𝑖𝑛 𝐼 such that |𝑖| = 𝑛 we have:

- minimization problem (basically, an explicit lower-bound of the optimal solution)

𝑐(𝐴Π(𝑖))

𝑐(𝑠∗(𝑖))
≤ 𝜌(𝑛)

- maximization problem (basically, an explicit upper-bound of the optimal solution)

𝑐(𝑠∗(𝑖))

𝑐(𝐴Π(𝑖))
≤ 𝜌(𝑛)

Here, we assume that 𝑐 maps each feasible solution to a real number ≥ 1.

Goal: 𝜌(𝑛) = 1 + 𝜖, with 𝜖 as small as possible.

Definition: An approximation scheme for Π is an algorithm with 2 inputs 𝐴Π(𝑖, 𝜖) that ∀𝜖 is a (1 + 𝜖)-
approximation.

- In this case we just have to choose how much approximation we want by tuning the value of 𝜖
- In other words: fixed an instance 𝑖 of size 𝑛, the quality is 𝜖 (whatever 𝜖 is)

37 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

21.1 EXAMPLES OF APPROXIMATIONS

Very first algorithm you can think of? Use a greedy approach:

- select the vertex for the highest degree
- “remove” the touched edges
- repeat

Consider the following figure – take 3 as the highest, then 2 and 1 and remove touched edges as said:

Unfortunately, for this algorithm 𝜌(𝑛) = Ω(log(𝑛)).

How to prove a LB (Lower Bound)? It’s enough to show one “bad” input instance.

Another algorithm (greedy approach):

- choose any edge
- add its endpoints to the solution
- “remove” the covered edges
- repeat

We’ll show that this is a 2-approximation algorithm.

procedure 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟(𝐺)

 𝑉′ = ∅

𝐸′ = 𝐸

while E′ ≠ ∅: do

 𝐿𝑒𝑡 (𝑢, 𝑣) 𝑏𝑒 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑒𝑑𝑔𝑒 𝑜𝑓 𝐸′

 𝑉′ = 𝑉′ ∪ {𝑢, 𝑣}

 𝐸′ = 𝐸′ ∖ {(𝑢, 𝑧), (𝑣, 𝑤)}

 // 𝑟𝑒𝑚𝑜𝑣𝑒 𝑒𝑑𝑔𝑒𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑣𝑒 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑠 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠

return 𝑉′

Complexity: 𝑂(𝑛 + 𝑚)

We’ll show |𝑉
′|

|𝑉∗|
≤ 2

38 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

Given 𝐴 = set of selected edges:

- 𝐴 is a matching: ∀𝑒, 𝑒′ ∈ 𝐴 ⇒ 𝑒 ∩ 𝑒′ = ∅
a. i.e. set of edges with no vertices in common
b. every edge is disjoint, so there is no couple of edges sharing a common node

- 𝐴𝑝𝑝𝑟𝑜𝑥_𝑉𝑒𝑟𝑡𝑒𝑥_𝐶𝑜𝑣𝑒𝑟 selects a maximal matching: ∀ edge 𝑦, 𝐴 ∪ 𝑦 is not a matching
a. this is a matching which cannot be increased

i. not possible to select an edge which touches other vertices

Proof:

1. lower bound to the optimal solution 𝑉∗

What can one say about |𝑉∗| 𝑣𝑠 |𝐴|?

𝐴 is a matching ⇒ in 𝑉∗ there must be ≥ 1 vertex ∀ edge of 𝐴 (right figure)

In whatever vertex cover, particularly 𝑉∗, we have to cover all graph edges and, in
particular, all 𝐴 edges. But 𝐴 is a matching (so, every edge of 𝐴 is disjoint), so:

|𝑉∗| ≥ |𝐴|

2. upper bound to the optimal solution 𝑉′

What can one say about |𝑉′| 𝑣𝑠 |𝐴|?

- |𝑉′| = 2|𝐴| by construction and so:

(1. + 2.) ⇒ |𝑉′| ≤ 2|𝐴| ≤ 2|𝑉∗| ⇒
|𝑉′|

|𝑉∗|
≤ 2

39 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

22 TSP & METRIC TSP

22.1 TRAVELLING SALESPERSON PROBLEM (TSP)

Definition: Given a complete, undirected graph and a function 𝑤: 𝐸 → ℝ+, output a tour 𝑇 ⊆ 𝐸 (i.e. a
cycle that passes through every vertex exactly once) minimizing ∑ 𝑤(𝑒)𝑒∈𝑇 . Collectively:

𝑇 ⊆ 𝐸 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 ∑ 𝑤(𝑒)

𝑒∈𝑇

- 𝑤: 𝐸 → ℝ+ : we will work only on positive weights).
a. We can do this without loss of generality (wlog) because every TSP tour has the same

number of edges ⇒ we can add a large weight to each edge, such that edges have non-
negative weights

22.2 METRIC TSP

Metric TSP is a special case of TSP where the weight function 𝑤 satisfies the triangle inequality:

∀ 𝑢, 𝑣, 𝑧 ∈ 𝑉, it holds that 𝑤(𝑢, 𝑣) ≤ 𝑤(𝑢, 𝑧) + 𝑤(𝑧, 𝑣)

The following is an example of that:

The problem can be shown to be NP-Hard, using an instance of TSP to build this one and using an
Hamiltonian circuit to show we can assign a weight to each edge being “balanced” overall in the
choice, always ensuring the best choice.

22.2.1 Metric TSP is NP-Hard

Theorem: 𝑀𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃 is NP-Hard

Proof: 𝑇𝑆𝑃 ≤𝑝 𝑀𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃

The idea is the following (where inequality is not strictly satisfied):

40 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

Given an instance of the TSP problem < 𝐺 = (𝑉, 𝐸), 𝑤, 𝑘 >,
we build an instance of 𝑀𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃 < 𝐺′ = (𝑉, 𝐸), 𝑤′ , 𝑘′ >
such that the triangle inequality is satisfied in 𝐺′ . In order

to to this, we can define the weight function 𝑤 ′ as follows:

𝑤′(𝑢, 𝑣) = 𝑤(𝑢, 𝑣) + 𝑊

giving 𝑊 = max
𝑢,𝑣∈𝑉

{𝑤(𝑢, 𝑣)}

Think of a value 𝑘′ in such a way there if there exist an Hamiltonian circuit, there will be one in 𝐺′ in
such a way the cost of the tour will work for every edge, so:

𝑘′ = 𝑘 + 𝑛𝑊

To be shown yet:

1) 𝑤′ satisfies triangle inequality
2) ∃ an Hamiltonian circuit of cost 𝑘 in 𝐺 ⇔ ∃ Hamiltonian circuit of cost 𝑘′ in 𝐺′

Let’s see how to solve them formally:

1) 𝑤′(𝑢, 𝑣) ≤? 𝑤′(𝑢, 𝑤) + 𝑤′(𝑤, 𝑣) (is it at most the weight of the others)?
𝑤(𝑢, 𝑣) + 𝑊 ≤? 𝑤(𝑢, 𝑤) + 𝑤(𝑤, 𝑣) + 2𝑊 (does this hold adding a general weight)?
𝑤(𝑢, 𝑣) ≤? 𝑤(𝑢, 𝑤) + 𝑤(𝑤, 𝑣) + 𝑊 (simply adding 𝑊 both members)
𝑤(𝑢, 𝑤) + 𝑤(𝑤, 𝑣) + 𝑊 − 𝑤(𝑢. 𝑣) ≥? 0 (is it true this is at most 0)?

We only ask if the definition of triangle inequality is satisfied correctly.
Note it’s important that the weights of edges are non-negative (otherwise, last part does not
hold)

2)
a. ⇒: ∃ Ham. circuit of cost 𝑘 in 𝐺. Note that an optimal solution contains exactly 𝑛 edges

and the same circuit in 𝐺′ introduces a weight for every edge (so, +𝑊 ∀ edge). Thus,
the cost of said tour in 𝐺′ is 𝑘 + 𝑛𝑊

b. just remove the +𝑊 ∀ edge to obtain a Ham. circuit of cost 𝑘 in 𝐺

41 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

Let’s see how to solve them formally:

3) 𝑤′(𝑢, 𝑣) ≤? 𝑤′(𝑢, 𝑤) + 𝑤′(𝑤, 𝑣) (is it at most the weight of the others)?
𝑤(𝑢, 𝑣) + 𝑊 ≤? 𝑤(𝑢, 𝑤) + 𝑤(𝑤, 𝑣) + 2𝑊 (does this hold adding a general weight)?
𝑤(𝑢, 𝑣) ≤? 𝑤(𝑢, 𝑤) + 𝑤(𝑤, 𝑣) + 𝑊 (simply adding 𝑊 both members)
𝑤(𝑢, 𝑤) + 𝑤(𝑤, 𝑣) + 𝑊 − 𝑤(𝑢. 𝑣) ≥? 0 (is it true this is at most 0)?

We only ask if the definition of triangle inequality is satisfied correctly.
Note it’s important that the weights of edges are non-negative (otherwise, last part does not
hold)

4)
a. ⇒: ∃ Ham. circuit of cost 𝑘 in 𝐺. Note that an optimal solution contains exactly 𝑛 edges

and the same circuit in 𝐺′ introduces a weight for every edge (so, +𝑊 ∀ edge). Thus,
the cost of said tour in 𝐺′ is 𝑘 + 𝑛𝑊

b. just remove the +𝑊 ∀ edge to obtain a Ham. circuit of cost 𝑘 in 𝐺

22.3 2-APPROXIMATION ALGORITHM FOR METRIC TSP

What is the most similar problem to 𝑀𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃? MST (Minimum Spanning Tree). We give the following
intuition:

- we give an MST
- we want to build a cycle: what to do on a tree to achieve it?
- basically, there is a DFS traversing all the nodes
- the cycle forms having all nodes touched exactly once

We can simply solve this problem by adding the edge (𝑒, 𝑎) to the 𝑃𝑟𝑒𝑜𝑟𝑑𝑒𝑟 list and make it an
Hamiltonian circuit. We are free to add every edge we want because the graph is complete by
definition. To do so, we define the following:

procedure 𝐴𝑝𝑝𝑟𝑜𝑥 − 𝑀𝑒𝑡𝑟𝑖𝑐 − 𝑇𝑆𝑃(𝐺):

 𝑉 = {𝑣1, 𝑣2, … 𝑣𝑛}

 𝑟 = 𝑣1 //𝑟𝑜𝑜𝑡 𝑓𝑟𝑜𝑚 𝑤ℎ𝑖𝑐ℎ 𝑃𝑟𝑖𝑚 𝑖𝑠 𝑟𝑢𝑛

 𝑇∗ = 𝑃𝑟𝑖𝑚(𝐺, 𝑟)

 < 𝑣𝑖1
, 𝑣𝑖2

, … 𝑣𝑖𝑛
> 𝐻′ = 𝑃𝑅𝐸𝑂𝑅𝐷𝐸𝑅(𝑇∗, 𝑟)

42 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

// 𝑙𝑖𝑠𝑡𝑠 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒 𝑖𝑛 𝑎𝑛 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑓𝑎𝑠ℎ𝑖𝑜𝑛 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑎 𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟 𝑤𝑎𝑙𝑘

 return < 𝐻′, 𝑣𝑖1
≥ 𝐻 // 𝑏𝑎𝑠𝑖𝑐𝑎𝑙𝑙𝑦, 𝑐𝑙𝑜𝑠𝑒 𝑡ℎ𝑒 𝑐𝑦𝑐𝑙𝑒

This algorithm uses Prim as a subroutine to compute the MST. As such, this is super-fast and can be
characterized as a near-linear algorithm.

So, to fully summarize:

1. Given a complete weighted graph 𝐺, pick any vertex 𝑣 as the root, and find a minimum
spanning tree 𝑇, using Prim’s algorithm

2. Compile a list 𝐿 of vertices encountered in a preorder traversal of 𝑇

3. Return 𝐿 as a tour

22.4 3/2 (OR 1.5) APPROXIMATION ALGORITHM FOR METRIC TSP

Christofides algorithm (or Christofides–Serdyukov algorithm) was born in 1976.

Reason for 2-approximation factor was the fact the preorder traversal of 𝑇∗ used every edge of 𝑇∗
exactly twice. We’ll try to improve on this by constructing a tour that traverses MST edges only once.

We give a couple of definitions useful for this context:

- A path (or cycle) is Eulerian if it crosses every edge of the graph exactly once
- A connected graph is Eulerian if there exists an Eulerian cycle

If the MST was Eulerian (cannot be) then we would have a 1-approx algorithm (which would be
optimal, given one would cross every edge exactly once). 𝐴𝑝𝑝𝑟𝑜𝑥_𝑀𝑒𝑡𝑟𝑖𝑐_𝑇𝑆𝑃 is finding a “cheap”
Eulerian cycle in the MST, but effectively needs to double its edges.

Question: is there a cheaper Eulerian cycle?

Theorem: A connected graph is Eulerian ⇔ every vertex has even degree. The intuition is the following:
enter a vertex, then exiting from it using a new edge, doing that without using edges more than once.

We want to focus on the odd degree vertices, given I have to cross again vertices (the even ones are
fine, given we don’t pass on them again). So, let’s handle the odd-degree vertices of the MST explicitly.

Property: in any (finite) graph, the number of vertices of odd degree is even.

Proof: We use the following equality:

∑ deg(𝑣) = 2𝑚

𝑣∈𝑉

43 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

Basically, the sum of odd vertices with even ones, will get us an even result, that’s the main intuition.
So, we can split such summation into two parts:

∑ deg(𝑢) + ∑ deg(𝑤) = 2𝑚

𝑤∈𝑜𝑑𝑑𝑢∈𝑒𝑣𝑒𝑛

Since the result must be even, the sum of degrees must be even too. But this happens only if the
number of odd degree vertices is even.

Idea: augment the initial MST 𝑇∗ with (the cheapest basically) a minimum-weight perfect matching
(perfect means that it includes all the vertices) between the vertices that have odd degree in the MST.

For instance, let’s consider the following MST, coloring in blue the odd-degree vertices. Imagine we
add a perfect matching colored in red.

⇒ the resulting graph has only even-degree vertices, i.e. is an Eulerian graph.

Let’s write the algorithm, which does exactly for things:

𝐶ℎ𝑟𝑖𝑠𝑡𝑜𝑓𝑖𝑑𝑒𝑠(𝐺)

1) 𝑇∗ ← 𝑃𝑟𝑖𝑚(𝐺, 𝑟) // 𝑇∗ = (𝑉, 𝐸∗)

2) Let 𝐷 be the set of vertices of 𝑇∗ with odd-degree. Compute a min-weight perfect matching 𝑀∗ on
the graph induced by 𝐷 // this can be done in polynomial time (Edmonds, 1965)

3) The graph (𝑉, 𝐸∗ ∪ 𝑀∗) is Eulerian // any edge in both 𝐸∗ and 𝑀∗ appears twice in this (multi)graph.

4) Return the cycle that visits all the vertices of 𝐺 in the order of their first appearance in the Eulerian
cycle (basically, skipping all repeated vertices – shortcutting)

Consider the following example, connecting all vertices:

44 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

Now take the odd-degree vertices 𝑇∗ and compute the minimum-weight perfect matching 𝑀∗.

Putting all of this together (merging it all) we get:

Analysing the algorithm:

- 𝑤(𝐻) ≤ 𝑤(𝑇∗) + 𝑤(𝑀∗)
a. by triangle inequality

- 𝑤(𝑇∗) ≤ 𝑤(𝐻∗)

The goal to reach is 𝑤(𝐻) ≤
3

2
𝑤(𝐻∗). We would need to prove:

- 𝑤(𝑀∗) ≤? 1

2
𝑤(𝐻∗) (by triangle inequality)

45 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

We will do the following clever step:

𝑤(optimal tour of the odd-degree vertices of 𝑇∗) ≤ 𝑤(𝐻∗)

One of these 2 has cost ≤ 𝑤(𝐻∗)

2

Putting all pieces together we get:

𝑤(𝐻) ≤ 𝑤(𝐻∗) +
𝑤(𝐻∗)

2
=

3

2
𝑤(𝐻∗)

46 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

23 SET COVER

Set cover is an optimization problem that models many problems requiring resources to be allocated.
It aims to find the least number of subsets that cover some universal set.

Its inputs are:

- 𝐼 = (𝑋, 𝐹) = instance of the set covering problem
- 𝑋 = set of elements of any kind, called “universe”
- 𝐹 ⊆ {𝑆: 𝑆 ⊆ 𝑋} = 𝐵(𝑋)

a. 𝐵 stands for “Boolean”: set of all subsets of 𝑋

There is a constraint that needs to be always respected: ∀𝑥 ∈ 𝑋, ∃ 𝑆 ∈ 𝐹: 𝑥 ∈ 𝑆 i.e., “𝐹 covers 𝑋”

Optimization problem: (smallest subset of 𝐹 having its members covering all 𝑋) → find 𝐹′ ⊆ 𝐹 s.t.

1) 𝐹′ covers 𝑋
2) min |𝐹′|

Example:

𝑋 = {1,2,3,4,5}

𝐹 = {{1,2,3}, {2,4}, {3,4}, {4,5}}

⇒ 𝐹∗ = {{1,2,3}, {4,5}}

23.1 SET COVER IS NP-HARD

Assertion: Set Cover (in its decision version < (𝑋, 𝐹), 𝑘 >) is NP-hard.

Proof: 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟 ≤𝑝 𝑆𝑒𝑡 𝐶𝑜𝑣𝑒𝑟

- Given an instance of Vertex Cover Problem < 𝐺 = (𝑉, 𝐸), 𝑘 >
- we create an instance of Set Cover problem < (𝑋, 𝐹), 𝑘 >

Basically < 𝐺 = (𝑉, 𝐸), 𝑘 >→𝑓< (𝑋, 𝐹), 𝑘 >

where:

- 𝑋 = 𝐸
- 𝐹 = {𝑆1, 𝑆2, … 𝑆𝑛} one ∀ vertex ∈ 𝑉, 1,2, … 𝑛
- 𝑆𝑖 = {𝑒 = (𝑢, 𝑣) such that 𝑢 = 𝑖 or 𝑣 = 𝑖}, which is the set of covered edges by node 𝑒

Basically, there are |𝑉| = 𝑛 subsets 𝑆𝑖, and each subset is the set of edges incident to vertex 𝑖. Now
show that finding a Set Cover of size 𝑘 ⇔ finding a Vertex Cover of size 𝑘.

- ⇒ Suppose {𝑆1, 𝑆2, . . . , 𝑆𝑘} is a set cover for 𝑋. Then, every edge in 𝐸 must be incident to at least
one vertex 𝑢1, . . , 𝑢𝑘. This happens because every element if one node of the adjacency list and
so we find the minimal number of nodes touching all edges of graph, guaranteeing it will be
minimal (for all sizes, given, even if less than 𝑘). Therefore, it forms a vertex cover of size 𝑘 in 𝐺.

- ⇐ Suppose 𝑢1, . . , 𝑢𝑘 is a vertex cover in 𝐺. Then, 𝑆𝑖 covers all the edges incident to vertex 𝑢𝑖.
Therefore, {𝑆1, . . , 𝑆𝑘} is a set cover of size 𝑘 for 𝑋

47 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

23.2 GREEDY APPROXIMATION ALGORITHM

The greedy method works by picking at each stage, the set 𝑆 that covers the greatest number of
remaining elements that are uncovered:

- choose the subset that contains the largest number of uncovered elements
- remove from 𝑋 those covered elements
- repeat until 𝑋 = ∅

𝐴𝑝𝑝𝑟𝑜𝑥_𝑆𝑒𝑡_𝐶𝑜𝑣𝑒𝑟(𝑋, 𝐹)

 𝑈 = 𝑋

 𝐹′ = ∅ // 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 while 𝑈 ≠ ∅: do

// 𝑡𝑎𝑘𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝐹 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑎𝑠 𝑚𝑎𝑛𝑦 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑠 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒

 𝑙𝑒𝑡 𝑆 ∈ 𝐹 = |𝑆 ∩ 𝑈| = max
𝑆′∈𝐹

{|𝑆′ ∩ 𝑈|}

 𝑈 ← 𝑈 ∖ 𝑆 // 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔 𝑡ℎ𝑜𝑠𝑒 𝑓𝑟𝑜𝑚 𝑆

 𝐹 ← 𝐹 ∖ {𝑆} // 𝑟𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑖𝑛𝑠𝑖𝑑𝑒 𝑜𝑓 𝐹

 𝐹′ ← 𝐹′ ∪ {𝑆}

 return 𝐹′

Correctness: (it does the job – it covers all the elements) At every iteration |𝑈| decreases by at least
one.

Complexity:

- n. of iterations ≤ |𝑋| (every 𝑆𝑖 ∈ 𝐹 contains at least an element)
- n. of iterations ≤ |𝐹| (every 𝑆𝑖 ∈ 𝐹 contains at least two elements)
- ⇒ n. of iterations ≤ min {|𝑋|, |𝐹|}
- ∀ iterations the complexity is ≤ |𝑋| ∗ |𝐹| (scanning all elements and decreasing elements in

both sets)
- ⇒ 𝑂(|𝑋| ∗ |𝐹| ∗ 𝑚𝑖𝑛{|𝑋|, |𝐹|})

48 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

24 RANDOMIZED ALGORITHMS

Randomized algorithms are algorithms that may do random choices, basically using a source of
randomness in its logic. We give some basic examples:

- Example 1: Randomized quicksort (RQS)

Quicksort but chooses the pivot at random so to break the unlucky element choice and get on average
a good probability on result.

- Example 2: Verifying polynomial identity

Checks if polynomials are equivalent and there are different approaches:

- check all the terms (slow)
- choose a random integer, compute the polynomials and check if they are equal

a. it may be wrong, outputting YES even If they are different

24.1 CLASSIFICATION OF RANDOMIZED ALGORITHMS

We divide these into two main categories:

1) randomized algorithms that never fail, which are called “LAS VEGAS” algorithms
a. (e.g., randomized quicksort)

∀𝑖 ∈ 𝐼, 𝐴𝑅(𝑖) = 𝑠 𝑠. 𝑡. (𝑖, 𝑠) ∈ Π

where Π ⊆ 𝐼 𝑥 𝑆 is the decisional problem, 𝑖 is an input instance, 𝐴𝑅 is the random algorithm
which applied to the input instance produces a solution 𝑠 s.t. the couple (𝑖, 𝑠) belongs to Π

Randomness comes into play in the analysis of the complexity – because it depends from the
randomness of the choices. ∀𝑛, 𝑇(𝑛) is a random variable of which we usually study its expectation

𝐸[𝑇(𝑛)] or Pr(𝑇(𝑛) > 𝑐 ∗ 𝑓(𝑛)) → ≤
1

𝑛𝑘 (so, for some constants 𝑐 and 𝑘, we say that 𝑇(𝑛) = 𝑂(𝑓(𝑛))

with high probability (here, 𝑇(𝑛) is called complexity function) – this second one is more powerful than
the first, so 𝑃𝑟 more powerful than 𝐸.

2) randomized algorithms that may fail are called “MONTE CARLO” algorithms
a. e.g., verifying polynomial identities

∀𝑖 ∈ 𝐼, 𝐴𝑅(𝑖) = 𝑠 𝑠. 𝑡. (𝑖, 𝑠) ∉ Π

We study Pr ((𝑖, 𝑠) ∉ Π) as a function of 𝑛 = |𝑖| → family of random variables (binary)

Moreover, even 𝑇(𝑛) may be a random variable. For decision problems, these algorithms can be
divided into:

- one-sided: they may fail only on one answer
a. e.g., can make right all YES instances but may be wrong on all NO instances

- two-sided: they may fail in both answers
a. e.g., it can make wrong all YES instances but can make wrong all NO instances

49 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

24.2 KARGER’S ALGORITHM FOR MINIMUM CUT

A quite simple MONTE CARLO and elegant algorithm created in 1993. Let’s start from the problem
itself it wants to solve: the minimum cut revolves finding a cut of minimum size, that is, the minimum
number of edges whose removal disconnects the graph. A couple of useful definitions to see the
problem:

Definition: A multiset is a collection of objects with repetitions allowed. It’s usually denoted between a
couple of brackets, as you can see here.

𝑆 = {{𝑜𝑏𝑗𝑒𝑐𝑡𝑠}}

∀ 𝑜𝑏𝑗𝑒𝑐𝑡 𝑜 ∈ 𝑆, 𝑚(𝑜) ∈ ℕ ∖ {0]

where 𝑚 = multiplicity, so how many copies of “o” are in 𝑆.

Definition:

- a multigraph 𝐺 = (𝑉, ℰ) s.t. ∀ 𝑉 ⊆ ℕ, 𝑉 finite and ℰ is a multiset of elements (𝑢, 𝑣) 𝑠. 𝑡. 𝑢 ≠ 𝑣

Note: A simple graph 𝐺 = (𝑉, 𝐸) is also a multigraph.

Definition:

- given 𝐺 = (𝑉, ℰ) connected, a cut 𝐶 ⊆ ℰ is a multiset of edges s.t. 𝐺′ = (𝑉, ℰ ∖ 𝐶) is not
connected.

Let’s give Karger’s idea here:

- choose an edge at random
- “contract” the two vertices of that edge, removing all the edges incident both vertices

This works with very low probability, but let’s use the trick we saw already: repeating this a good
enough number of times, can actually refine the analysis and obtain a good level of probability.

We see below two examples of the same contraction in Karger and on the right a generic contraction.

- Basically, it makes the two vertices to collapse in just one vertex
connected with all the previous adjacent vertices

- If as a result there are several edges between some pairs of (newly
formed) vertices, retain them all.

50 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

Definition: given 𝐺 = (𝑉, ℰ) and 𝑒 = (𝑢, 𝑣) ∈ ℰ, the contraction of 𝐺 with respect to 𝑒, 𝐺
𝑒

= (𝑉′, ℰ′) is

the multigraph with 𝑉′ = 𝑉 ∖ {𝑢, 𝑣} ∪ {𝑧𝑢,𝑣} with 𝑧𝑢,𝑣 ∉ 𝑉 coming from the fusion of 𝑢 and 𝑣:

ℰ′ = ℰ ∖ {{(𝑥, 𝑦) 𝑠. 𝑡. (𝑥 = 𝑢) 𝑜𝑟 (𝑥 = 𝑣)}}

∪ {{(𝑧𝑢,𝑣, 𝑦) 𝑠. 𝑡. (𝑢, 𝑦) ∈ ℰ 𝑜𝑟 (𝑢, 𝑦) ∈ ℰ, 𝑦 ≠ 𝑢 𝑎𝑛𝑑 𝑦 ≠ 𝑣

We describe the algorithm here:

𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 (𝐺 = (𝑉, ℰ))

 for 𝑖 = 1 to 𝑛 − 2: do

 𝑒 ← 𝑅𝐴𝑁𝐷𝑂𝑀(ℰ) // 𝑐ℎ𝑜𝑜𝑠𝑒 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑎𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡

 𝐺′ = (𝑉′, ℰ′) ←
𝐺

𝑒
 // 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑔𝑟𝑎𝑝ℎ 𝑤𝑖𝑡ℎ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑑𝑔𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

 𝑉 ← 𝑉′ // 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑔𝑟𝑎𝑝ℎ 𝑤𝑖𝑡ℎ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑎𝑛𝑑 𝑒𝑑𝑔𝑒𝑠

 ℰ ← ℰ′

 return |ℰ| // 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦

Consider 𝑘 → how many times to repeat 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁, which depends on the probability of
making a mistake – hence, it depends on the analysis of the algorithm)

𝐾𝐴𝑅𝐺𝐸𝑅(𝐺 = (𝑉, ℰ), 𝑘)

 𝑚𝑖𝑛 − 𝑐𝑢𝑡 = ℰ

 for 𝑖 = 1 𝑡𝑜 𝑘: do

 𝑡 = 𝐹𝑈𝐿𝐿_𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁(𝐺)

 if |𝑡| < |𝑚𝑖𝑛 − 𝑐𝑢𝑡| then

 𝑚𝑖𝑛 − 𝑐𝑢𝑡 = 𝑡

 return 𝑚𝑖𝑛 − 𝑐𝑢𝑡

The analysis suggests us the following:

repeats 𝐹𝑈𝐿𝐿 − 𝐶𝑂𝑁𝑇𝑅𝐴𝐶𝑇𝐼𝑂𝑁 𝑘
times to reduce the probability of
error

to be determined by the analysis

51 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

25 CHERNOFF BOUNDS

Chernoff bounds are tools from modern probability theory that are frequently used in the analysis of
randomized algorithms. They’re a more powerful version of the Markov’s lemma. This mainly uses
indicator random variables (that is, variables which can have either value 0 or 1).

Generally, Chernoff bounds are a tool which allow to
study the concentration of an event around its mean

(specifically, in the “tail” – see figure – so, far from the
mean) and to overcome the previous fact we use them.

- The markup is a little loose, not very significant
- Better augmentation allows me to move from

analysis to the average case to the more desirable high probability analysis

The idea between Chernoff bounds is to transform the original random variable into a new one, such
that the distance between the mean and the bound we will get is significantly stretched. It answers the
question about how tight the bound we can get when having more information about the distribution
of the random variables.

We give Chernoff’s lemma here: let 𝑋1, 𝑋2, … 𝑋𝑛 independent indicator random variables where
𝐸[𝑋𝑖] = 𝑝𝑖 , 0 < 𝑝𝑖 < 1. Let 𝑋 = ∑ 𝑋𝑖

𝑛
𝑖=1 and 𝜇 = 𝐸[𝑋]. Then ∀ 𝛿 > 0:

Pr(𝑋 > (1 + 𝛿)𝜇) < (
𝑒𝛿

(1 + 𝛿)(1+𝛿)
)

𝜇

In words: the outcome concentrates around the min is very high – to the contrary, the probability of
deviating from the min should be very low.

25.1 CHERNOFF BOUND VARIANTS

Consider the following variants of Chernoff bounds (weaker but easier to state and to use):

1) Pr(𝑋 < (1 − 𝛿)𝜇) < 𝑒−
𝜇𝛿2

2 , 0 < 𝛿 ≤ 1

2) Pr(𝑋 > (1 + 𝛿)𝜇) < 𝑒−
𝜇𝛿2

2 , 0 < 𝛿 ≤ 2𝑒 − 1

25.2 ANALYSIS IN HIGH PROBABILITY OF RANDOMIZED QUICKSORT

As an example of application of Chernoff bounds, we do the analysis of Randomized Quicksort, in
which we remember the pivot is chosen at random (possibly, not very far from the median). This is a
LAS VEGAS algorithm, since it always sorts.

𝑅𝑎𝑛𝑑𝑄𝑢𝑖𝑐𝑘𝑆𝑜𝑟𝑡(𝑆) |𝑆| = 𝑛, all distinct

 if |𝑆| ≤ 1 then return ⟨𝑆⟩

 𝑝 = 𝑅𝐴𝑁𝐷𝑂𝑀(𝑆) // 𝑝𝑖𝑐𝑘 𝑎 “𝑝𝑖𝑣𝑜𝑡” 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑎𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑓𝑟𝑜𝑚 𝑆

52 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

 𝑆1 = {𝑥 ∈ 𝑆 𝑠. 𝑡. 𝑥 < 𝑝} // 𝑂(𝑛) 𝑡𝑖𝑚𝑒

 𝑆2 = {𝑥 ∈ 𝑆 𝑠. 𝑡. 𝑥 > 𝑝} // 𝑂(𝑛) 𝑡𝑖𝑚𝑒

 𝑍1 = 𝑅𝑎𝑛𝑑𝑄𝑢𝑖𝑐𝑘𝑆𝑜𝑟𝑡(𝑆1)

 𝑍2 = 𝑅𝑎𝑛𝑑𝑄𝑢𝑖𝑐𝑘𝑆𝑜𝑟𝑡(𝑆2)

 return ⟨𝑍1, 𝑝, 𝑍2⟩

We want to approximate as close as possible to the actual median. The generic event 𝐸 can be
characterized as the “good choice” of the pivot between all the statistically possible choices.

So, calculating the cost of the algorithm:

- total work at each level is mostly linear, so ≤ 𝑐 ∗ 𝑛

- depth of the recursion tree = min {𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑖 𝑠. 𝑡. (
3

4
)

𝑖
𝑛 ≤ 1} = ⌈log4

3

(𝑛)⌉ = 𝑂(log(𝑛))

So, continuing: (3

4
)

𝑖
𝑛 ≤ 1 ⇔ (

3

4
)

𝑖
≤

1

𝑛
⇔ (

4

3
)

𝑖
≥ 𝑛 ⇔ log4

3

(
4

3
)

𝑖
≥ 𝑖 ≥ log4

3

(𝑛)

 ⇒ 𝑇𝑅𝑄𝑆(𝑛) = 𝑂(𝑛𝑙𝑜𝑔(𝑛))

Fix one root-leaf path 𝑃 and the following lemma says, “with h.p. the path chosen in short”;
specifically shorter than log (𝑛)”.

Lemma: Pr (|𝑃| > 𝑎 ∗ log4

3

(𝑛)) <
1

𝑛3

We are trying to find the probability there is at least one big path around the mid value.

If this is true, we’re done, applying the very frequent/very famous following lemma.

Lemma (Union bound): for any random events 𝐸1, … 𝐸𝐾:

Pr(𝐸1 ∪ 𝐸2 ∪ … ∪ 𝐸𝑘) ≤ Pr(𝐸1) + Pr(𝐸2) + ⋯ + Pr (𝐸𝑘)

If the lemma is true, it follows that:

- Given the event 𝐸𝑖 = the path 𝑝𝑖 has length > 𝑎 ∗ log4

3

(𝑛):

Pr (∃ 𝑝𝑎𝑡ℎ > 𝑎 ∗ log4
3

(𝑛)) = Pr (⋃ 𝐸𝑖) ≤𝑢𝑛𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑

𝑛

𝑖=1

≤ ∑ Pr(𝐸𝑖) <𝑙𝑒𝑚𝑚𝑎 𝑛 ∗
1

𝑛3
=

1

𝑛2

𝑛

𝑖=1

… ≥ 1 −
1

𝑛2

⇒ 𝑇𝑅𝑄𝑆(𝑛) = 𝑂(𝑛𝑙𝑜𝑔(𝑛)) w.h.p.

53 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

Suppose 𝑝 is always the median of 𝑆; then

𝑇𝑅𝑄𝑆(𝑛) = {
2𝑇𝑅𝑄𝑆 (

𝑛

2
) + 𝑂(𝑛), 𝑛 > 1

0, 𝑛 ≤ 1

So, basically:

- there are 𝑛 nodes (excluding leaves associated to ∅) ⇒ ≤ 𝑛 paths root-leaf
- we will show these paths are not so long; using any method (Master theorem or whatever), we

get the same height of the tree

𝑇𝑅𝑄𝑆(𝑛) =𝑀𝑎𝑠𝑡𝑒𝑟 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 𝑂(𝑛 log(𝑛))

However, 𝑝 is the median with probability 1
𝑛

, which is very low.

(The following part is useful for the exam)

The event 𝐸 can be characterized as “in the first 𝑙 = 𝑎 ∗ log4

3

(𝑛) nodes of 𝑃 there have been < log4

3

(𝑛)

lucky choices”. I’m studying this last event:

- 𝑋𝑖 , 1 ≤ 𝑖 ≤ 𝑙 = 𝑎 ∗ log4

3

(𝑛)

- 𝑋𝑖 = 1 if at the 𝑖𝑡ℎ vertex of 𝑃 there is a lucky choice of the pivot

- Pr(𝑋𝑖 = 1) =
1

2
 ∀𝑖

- 𝑋𝑖 are independent

We want the probability of 𝑃(∑ 𝑋𝑖) < log4

3

(𝑛)𝑙
𝑖=1 to be bound (and to be very low).

Given 𝑋 = ∑ 𝑋𝑖
𝑙
𝑖=1 , its expected value is as follows:

𝜇 = 𝐸[𝑋] = 𝐸[∑ 𝑋𝑖] = ∑ 𝐸[𝑋𝑖] = ∑
1

2
=

𝑙

2
=

𝑎

2
log4

3

(𝑛)

𝑙

𝑖=1

𝑙

𝑖=1

𝑙

𝑖=1

Now, let’s apply the following Chernoff bound:

Pr(𝑋 < (1 − 𝛿)𝜇) < 𝑒
−𝜇𝛿2

2 , 0 < 𝛿 ≤ 1

↓

(1 − 𝛿)𝜇 = log4
3

(𝑛)

(1 − 𝛿)
𝑎

2
log4

3

(𝑛) = log4
3

(𝑛)

One possible choice is 𝑎 = 8, 𝛿 =
3

4
.

Pr (𝑋 < log4
3

(𝑛)) < 𝑒
−

8
4

∗𝑙𝑜𝑔4
3

(𝑛)∗
9

16

= 𝑒
−

8
4

∗𝑙𝑜𝑔4
3

(𝑛)∗
9
8

< 𝑒
−𝑙𝑜𝑔4

3

(𝑛)

54 Advanced Algorithms Theory Swiss Knife

Written by Gabriel R.

= 𝑒

−𝑙𝑛(𝑛)

𝑙𝑛(
4
3

)

= (𝑒−𝑙𝑛(𝑛))

1

ln (
4
3

)

= (
1

𝑛
)

1

ln(
4
3

)
≃3,47

<
1

𝑛3

	2 Graph – General Definitions
	3 Depth First Search - DFS
	3.1 Description
	3.2 Algorithm
	3.3 Complexity
	3.4 Applications

	4 Breadth First Search - BFS
	4.1 Description
	4.2 Algorithm
	4.3 Complexity
	4.4 Applications

	5 Minimum Spanning Tree – MST
	5.1 Generic Greedy Algorithm
	5.2 Definitions

	6 Prim’s Algorithm
	6.1 Description
	6.2 Algorithm
	6.3 Complexity
	6.4 Example of Execution for Exam

	7 Efficient Prim – Heap Implementation
	7.1 Description
	7.2 Algorithm
	7.3 Complexity

	8 Kruskal’s Algorithm
	8.1 Description
	8.2 Algorithm
	8.3 Complexity
	8.4 Example of Execution for Exam

	9 Efficient Kruskal – Union-Find
	9.1 Description
	9.2 Algorithm
	9.3 Complexity

	10 Shortest Path
	11 Single-Source Shortest Path (SSSP)
	12 Non-negative weights – Dijkstra
	12.1 Description
	12.2 Algorithm
	12.3 Complexity

	13 Efficient Dijkstra – Heap
	13.1 Description
	13.2 Algorithm
	13.3 Complexity

	14 General Case: SSSP Problem
	15 Bellman-Ford’s Algorithm
	15.1 Description
	15.2 Algorithm
	15.3 Complexity

	16 All-Pairs Shortest Paths (APSP)
	17 Floyd-Warshall’s Algorithm
	17.1 Description
	17.2 Algorithm
	17.3 Complexity

	18 Maximum Flows
	19 Ford-Fulkerson’s Algorithm
	19.1 Description
	19.2 Algorithm
	19.3 Complexity

	20 NP-Hardness
	20.1 NP-Hard Problems
	20.2 NP-Hard Proofs

	21 Approximation Algorithms
	21.1 Examples of Approximations

	22 TSP & Metric TSP
	22.1 Travelling Salesperson Problem (TSP)
	22.2 Metric TSP
	22.2.1 Metric TSP is NP-Hard

	22.3 2-Approximation Algorithm for Metric TSP
	22.4 3/2 (or 1.5) Approximation Algorithm for Metric TSP

	23 Set Cover
	23.1 Set Cover is NP-Hard
	23.2 Greedy Approximation Algorithm

	24 Randomized Algorithms
	24.1 Classification of Randomized Algorithms
	24.2 Karger’s Algorithm for Minimum Cut

	25 Chernoff Bounds
	25.1 Chernoff Bound Variants
	25.2 Analysis in High Probability of Randomized Quicksort

